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ORIENTATION

This is Part VI of a six-part report on the results of an
investigation into the problem of determining the scattered field
resulting from the interaction of a given electromagnetic incident . 4

wave with a perfectly conducting body executing specified motion and : 1

deformation in vacuum. Part I presents the principal results of the
study of the case of a general motion, while Part II contains the
specialization and completion of the general reasoning in the situation
in which the scattering body is stationary. Part III is devoted to
the derivation of a boundary-integral-type representation for the
scattered field, in a form involving scalar and vector potentials.
Parts IV, V, and VI are of the nature of appendices, containing the
proofs of numerous auxiliary technical assertions utilized in the
first three parts. Certain of the chapters of Part I are sufficient
preparation for studying each of Parts IIl thfough VI. Specifically,
the entire report is organized as follows:

Part I. Formulation and Reformulation of the Scattering
Problem

Chapter 1. Introduction

Chapter 2. Manifolds in Euclidean Spaces. ]
Regularity Properties of Domains
(Summary of Part VI]

Chapter 3. Motion and Retardation
{Summary of Part V)




Part 1I.

Part III.

Part 1IV.

Part V.

Part VI.
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Chapter 4. Formulation of the Scattering Problem.
Theorems of Unigueness

Chapter 5. Kinematic Single Layer Potentials
[Summary of Part IV]

Chapter 6. Reformulation of the Scattering Problem

Scattering by Stationary Perfect Conductors
[Prerequisites: Part I)

Representations of Sufficiently Smooth Solutions
of Maxwell's Equations and of the Scattering
Problem

[Prerequisites: Section [I.1.4}, Chapters [I.2
and 3], Sections [1.4.1] and [I.5.1-10]]

Kinematic Single Layer Potentials
[Prerequisites: Section [I.l1.4], Chapters [I.2
and 3]}

A Description of Motion and Deformation. Retardation
of Sets and Functions
[Prerequisites: Section [I.1.4], Chapter {I.2]]

Manifolds in Euclidean Spaces. Regularity
Properties of Domains
[Prerequisite: Section [I.1.4]]

The section- and equation-numbering scheme is fairly self-

explanatory. For example, "[1.5.4]" designates the fourth section of

Chapter 5 of Part I, while "(1.5.4.1)" refers to the equation numbered
(1) in that section; when the reference is made within Part I,

however, these are shortened to "[5.4]" and "(5.4.1),
Note that Parts II-VI contain no chapter-subdivisions. '"[IV.14]"

indicates the fourteenth section of Part IV, "(IV.14.6)" the equation

respectively.

numbered (6) within that section; the Roman-numeral designations are

never dropped in Parts II-VI.
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A more detailed outline of the contents of the entire report
appears in [I.1.2]. An index of notations and the bibliography are
also to be found in Part I. References to the bibliography are made
by citing, for example, "Mikhlin ([34]." Finally, it should be

pointed out that notations connected with the more common mathematical

concepts are standarized for all parts of the report in [I.1.4].




PART VI

MANIFOLDS IN EUCLIDEAN SPACES.

REGULARITY PROPERTIES OF DOMAINS

The major portion of Chapter {I.2] comprises just those defi-
nitions and bare statements of technical results concerning manifolds
in Euclidean spaces, Lebesgue measure and integration on such mani-
folds, and the implications of various regularity hypotheses for
open sets in a Euclidean space, which are needed in the subsequent
study of the scattering problem. This essentially self-contained
Part VI is an expanded version of that same material, providing the
requisite auxiliary concepts and complete proofs. The development
draws freely upon, and modifies, presentations appearing in

Fleming (14, 15], Munkres [40], Gunter [19], and Mikhlin [34].
We begin with two standard results.

(Vvi.1] INVERSE FUNCTION THEOREM Llet
n€N with n>2, and q €ENV{=}. Llet UCR" be open and

fle Cq(v;]R") and suppose that x, € U with Jf(xo) $# 0. Then

0
there exdsts an open neighborhocd cf X3 Uy C U, such that
(4] £, := £ Uy 44 an injection;

() £(Ug) {3 open in R™;
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-1

q R N

liv)  fon each x €U, JE(x) 40, and {(DE(O}L =

0’
;) (£ .

PROOF. Cf., Fleming [15]. 0.

[v1.2] IMPLICIT FUNCTTION THEOREM. Let

n,m €N with m<n, and q € N{=}. Suppo».se. that UCR" 4 open, .

¢ € clUR™), and x; € U s such that o(xy)) = 0 and Do(x,) :
has (maximum) nank m. Then there exist an open neighbothood UgC U [
of x,, an open set V, CR™™, an increasing (n-m)-tuple )
S CORRRTE S of Antegens in {1,...,n}, and a unique |

function ¢ € cq(vo;mm) such that, with (jy,...,3;) denoting the

increasding m-tuple of integers in {1,...,n} complementany to 1,

ol

. i
{£) det (o'jk(x))lii’kim # 0 {or each x € Uy
i i
;- A 1 n-m .
(44) Xy = (x0 seenaXg ) €V,
(«h) {x€ UOI ¢(x) = 0} = !
1 3 !
xER® x = (x4, x "M ev, xKaskixh, |

k=1,...,m}.

We shall give an outline of the proof, in order to point out
the construction of an auxiliary functionwhich turns out to be of

later use.

PROOF (SKETCH). Since D¢(xo) has rank m, there is an

e O —— . T ——
PR < P ST SR (P i £ e RSN AR e A AR TV M L = e
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increasing m-tuple (jl”"’jm) of integers in {1,...,n} such

that det (¢% # 0. Let X\ = (11,...,in_m) denote the

jk(xo))liﬁ,k:m
increasing (n-m)-tuple of integers in {1,...,n} which is comple-
mentary to (jl,...,jm). Define a function f: U -+R" according to

i
fk(x) P k, k=1,...,n-m,

) = ),  k=1,....m,

for each x € U. Clearly, f € Cq(UﬂRn). A short computation and
use of the properties of determinants produce the equality |JE(x)| =

| det (@} (x)) for each x € U. 1In particular, we find
3

j l:},k:ml’

then that Jf(xo) # 0. According to the Inverse Function Theorem
{vi.l], there exists an open neighborhood Uo CU of Xy such that

f.:=f] U,;: U

0 "0 0’ 0
homeomorphism of U0 onto the open set f(Uo) C'Rn, and fal €

Jf(x) # 0 for each x€ U - f(Uo) is a

(£ (U R .

i i
1 n-n .
Noting that f(xo) = (xo sereaXy 305...,0) € f(bo), we

see that the set

,0) = (il,...,in-m

-

Vo i (k€ R (% ,0,...,0) € £(ry)}

contains xé and is open in mn-m, since f(UO) is open in R,

Define ¢: Vo-»]Rm by

-1 3 -
ok (%) := (fol) kb, ..., 58™0,...,0), for each %€V,

k € {1,...,m}.




Then it is routine to check that ¢ € Cq(VoﬂRm) and that (iii)

holds. To show that ¢ 1is unique, let &: v, +R" be any

0
function satisfying (iii): choosing X € V define x and X €R"

0’
1 1 j
by x kozk .. xk, for k=1,...,n-m, and x k .= ¢k(i),

% N

x = = ¢k(i), for k= 1,...,m. Then x*

= %" = %, and (iii) .

gives x, x € Uy» with o(x) = $(x) = 0. Obviously, it follows
0 is injective.
Consequently, ¢k(i) = ak(i) for k=1,...,m. Thus, ¢ = ¢. a.

that fo(x) = fo(i), whence x = X, since f

"manifold" in a Euclidean !

We proceed to the definition of
space. We shall not need the idea of a "manifold with boundary”
(cf. Munkres [40]), and so we can avoid introducing this more

inclusive concept.

[VI.3] DEFINITION. Let n€N and q € NW{=}., A non-

void open set in R™ shall be referred to as an (n,n;q)-mandfcld,

whenever it is convenient to do so. Now suppose that r € N and

r<n (so n>2): anon-void set MCR" is a manifold of

dimension r and class €9, or (r,n;q)-manifold, iff whenever \
x € M, there exist an open neighborhood Ux CR™ of x and a

function ex € Cq(UxﬂRn-r) such that rank D¢x(y) = n-r for each

y € U and

MU= {y €U ]| ¢ () =0 ..

[(vi.4] REMARKS. (a) It is clear that if M is an (r,n;qQ)-

manifold (r < n) and M is a relatively open subset of M, then
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M 1is also an (r,n;q)-manifold.

(b) Just as obvious is the fact that a non-void set M CR"
is an (r,n;q)-manifold iff each x € M possesses a relatively

open neighborhood Mx C M such that Mx is an (r,n;q)-manifold.

(¢) Let M be an (r,n;q)-manifold: then MR is an
(r+l,n+l;q)-manifold. To see this, suppose first that r < n.

Let (x,t) € MR, then Ux C:m?, ¢x € Cq(UxﬂRn-r) be as in [VI.3].

+
UxﬂR cR" 1 is an open neighborhood of (x,t). Define ¢(x £)

- gD =(r+1)

n-r ,
UXX]R - R by ¢(x,t) (y,s) := ®x(y), (y,s) € Lxxm.

+ -
For each (y,s) € U SR, the matrix of Do(x t)(y,s): Rr" 1 -RMT

relative to the standard bases is

0]

i :
G s et per i - (1)

1<j<n 0

Clearly, rank D¢ (v,s) = n-r = (n+l)-(r+l) for each (y,s) €

(x,t)
UR, while {wm}n{uxxm} = {(y,s) € uxxm{ ¢(x’t)(y,s) = 0}. The

case r =n 1s even more trivial.

For any (r,n;q)-manifold M and any x € M, we shall
define associated '"tangent" and '"normal" spaces to M at x, as

follows:

(vi.s] DEFINITTIONS. Let M be an (r,n;q)-manifold,

and x€M. BER" is a tangent vecton to M at x iff there is

a § >0 and a function y € Cl((—é,d)ﬂRn) such that y(s) € M
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for |s| <&, ¢(0) =x, and ¢'(0) = 8. The set of all tangent

vectors to M at x is called the tangent space tv M at x,

and denoted by TM(x). The orthogonal complement of TM(x) in R"

shall be referred to as the noumal space t¢ M at x, and denoted ,

by NM(x). ..

It is easy to show that TM(x) =R" and NM(x) = {0} for A

any (n,n;q)-manifold (non-void open set Can) M and any x € M. 1

In the general case, it is clear that 0 € TM(x), and it can be i
proven directly that TM(X) is a subspace of R". The implicit !
function theorem allows us to show that TM(x) is non-trivial, by , ]
showing that it has dimension r; as noted, we shall consider this

fact proven for the case r = n.

[vi.6] PROPOSITTION. L[et M bean (r,n;q)-manlgold,
with r <n; Let x€ M. Then TM(x) {8 an  r-dimensdiconal subspace
of R". In fact, {f U _CR" and ° € cq(Ux;m“'r) are as in

[v1.3], then

TM(x) = ker D@x(x).

PROOF. Noting that dim ker D¢x(x) = r.  since D@x(x):
R” »R"" and rank D¢x(x) = n-r, the first statement will follow i

once the second has been proven.

Suppose then that B8 € TM(x); B = ¢'(0) for some y €

Cl((-d,é)ﬂRn) as in [VI.5]. Since ¢ is continuous, and U

is a neighborhood of x = ¥(0), there is some &' € (0,5) for which
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v(s) € UxﬁM whenever |s| < 8', sc also @x(w(s)) = 0 for
|s| < &', Differentiating, by the composite function theorem, and
setting s = 0 gives D@x(w(O))w'(O) = 0, or Dox(x)B = 0. Thus,

8 € ker D¢x(x).

Now, let B € ker D¢x(x): we show that there exists a 6 > 0
and a function V¢ as in [VI.S5]. For this, observe that, since
o € clu ®T), with rank DO (x) = n-r, x €U, and ¢ (x) =0,
we can appeal to the construction carried out in the proof of the
implicit function theorem: there exist an increasing r-tuple
A= (il""’ir) of integers in {1,...,n} and an open neighborhood

Uo - Ux of x such that the function f.: U, - R" given by

0 0

. i H
k 1
fo(y) 1=y k, k=1,...,r, ;

r+k ‘= k = -
fo (y) : 0x(y), k=1,...,n-r,

for each y € Uo, is in Cq(UoﬂRn), is a homeomorphism of UO

onto the open set fo(U and for which fal € Cq(fo(Uo)ﬂRn).

0),
As in the proof of ({VI.2], the set

- R -1 -
Vo := {FERT| (5,00 = G7,..0035,0,...,0) € £,(U)}

is an open neighborhood of xA = (X T,...,% r) in R'.

Hence, r
there is a 6 > 0 such that xx+sB)‘ € V, whenever Is| <8, so

it is permissible to define y: (-6,6)-*]1&’l according to

v(s) := fal(xx+ssx,0), for each s € (-6§,8).




We claim that this ¢ fulfills the requirements of [VI.S5]. Since

fal € Cq(fo(Uo)ﬂRn), certainly ¢ € Cl((-é,é)ﬂRn). Whenever

sl <6, fr(x'+s8",0) € yyC U and

0

r+k

ko -1 2 A -1, A, oA
¢x(fo (x"+s87,0)) = £, (fo (x"+s8,0))

- (xk+ssk’o)r+k

=0, for k=1,...,n-r,

showing that y(s) € Ux and éx(w(s)) =0, so yY(s) € M. Also,

y(0) = fal(xk,O) = fal(fo(x)). Finally, we must show that y'(0) = g:

since y'(s) = {(Dfal)(xx+ssx,0)}(sl,0) if |s| < &, we have
¥'(0) = (£ (x",001(8Y,0) = {DE (£, (x)))(8%,0) =
{Dfo(x)}-l(BX,O), the latter equality following from [VI.l.iv],

in view of the manner in which f0 was constructed. Now,

n n i
) fg j(x)-ej -7 6ji-8j =8% for k=1,...,r, and
j=1 0 je1 3

n n
) f;+§(X)Bj ) ¢i j(x)Bj =0 for % =1,...,n-r, since
i=1 ’ j=1 ’

D@x(x)B = 0. These facts show that Dfo(x)B = (BA,O), whence
g = {Dfo(x)}-l(BA,O). Thus, ¢'(0) = 8. We conclude that 8 €
T“(x). a.

[VI.7] COROLLARY. Let M be an (r,n;q)-mandifcld with

r<n. let x€M Llet U crR" and ° € cq(uxaR“") be as in

n-r

k=1 provides a basis gon

(VI.3]. Then the sct {grad 0§(x)}

NM(x).

|
|
|
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PROOF. NM(x) is the orthogonal complement of TM(x). Clearly,
then, NM(x) has dimension n-r. Since D°x(x) has rank n-r,
the set {grad @l;(x) };::; is linearly independent. Whenever

. 8 € Tn(x) = ker D@x(x), Dd?x(x)B = 0, implying that grad ¢:(x)-5 =

n-r
k=1

| statement of the corollary obviously follows from these facts. a.

0, for k=1,...,n~r. Thus, {grad @l;‘(x)} CNM(x). The

¥
(VI.8) REMARK. Consider, as in [VI.4.c], the (r+l,n+ljq)-
manifold M<IR, where M is an (r,n;q)-manifold. Llet x € M, and
Ux’ Qx be as in [VI.3]. Choosing t €R and constructing

. q RO-T vy
: UxXJR and ¢ €C (U(x,t)’m ) as in [VI.4.c], it

Uix,t) (x,t)

is clear from the form of the matrix (VI.4.1l) that ker D¢ )(x,t) =

(x,t
TM(x)xR, since ker D¢x(x) - TM(x). Consequently, Twm(x,t) =

‘I‘M(x)xn, for each (x,t) € MR.

The next objective is the study of functions on a manifold
into a Euclidean space; for this, the idea of a ccordinate susicm
in a manifold is an indispensable tool. Such coordinate systems
also provide the means for defining Lebesgue measure on a manifold.
Before discussing these topics, we consider regulatr transjcematicrs

(cf., Fleming [15]).

{vi.9] DEFINITIONS. Let r,n €N, with r <n, and
q ENV{=}. Let Q be an open set in R, M an (r,njq)-manifold,

and g: Q - R".

(1) 1f gECI(Q;]Rn), we define Jg: Q = {0,=) by

— e
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(r);

r ‘ r
Jg(x) = | 2 g, ()| = | A De(x)e ]

i=]1

for each x € Q,

(ii) Suppose g(Q) € M. Then g is g-tegular iff
(1) g€ cUarRY,
(2) g 1is injective,

(3) rank Dg(x) = r, for each x € Q. B

[vi.10] REMARKS, (Notation as in [VI.9])

(a) Suppose g € Cl(Q;]Rn). The (r,n)-vector
g,l(x)/\.../\g,r(x) is non-zero, {.e¢., Jg(x) > 0, for some x € &,
iff the set {g,k(x) };_1 CTR" is linearly independent, which,
in turn, is true iff rank Dg(x) = r (since {g,k(x) };_1 is just
the collection of column vectors of the matrix of Dg(x): R - R"
with respect to the standard bases). Thus, condition [VI.9.1i.3]

holds iff Jg(x) > O for each x € Q.

(b) Consider the case r = n, and suppose g: £ - R"
is q-regular. Then M is an open set in ]Rn, which we can take
to be just R" itself. Now, rank Dg(x) = n, so Jg(x) ¥ 0,
for each x € 0. Since g€ cl(am™ is injective, it follows from

the inverse function theorem that g(&) CR" is open, g 1is a

1

homeomorphism of 2 onto g(R), and g Ecq(g(Q);]Rn). g is

sometimes referred to as a f§lat transgormaticn in this case.

(c) Again supposing r = n, so C]Rn, let g€ Cl(f.';‘IRn).

(1
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Now it can be shown that Jg(x) = IJg(x)|, for each x € ¢, cf.,
the proof of [VI.13), 4ngra, which appears in Fleming [14]. 1In
any case, {.e., whenever r<n and g€ Cl(QﬂRn), it can be shown
that

; IDg(x)TrA...ADg(x)TrI
g(x) = . X € Q,
l'rll\. . ./\Tj

for R*; 4f T, = e

(r)
1 7€ > 1=

r
for any choice of basis {Ti}i-l
l,...,r, this expression reduces to (VI.9.1), since

leir)A...Aeir)l = 1. Once again, we refer to Fleming [14] for the

proofs of these statements; cf., also, [VI.24.c], ingua.

We proceed to provide several basic facts concerning regular

transformations.

[VI.11] PROPOSITION. let @ beopen in RY, M an
(r,n;q)-manifold, and g: 9 -R" be p-regular (p € NU{=}],

with g(Q) CM. Llet x€ Q. Then

({) Dg(x): RF »R™ s an injection taking R® onto

Ty (8(x));
(44) {8, ()}, 44 @ basés for T,(g(x)).

PROOF. Dg(x) 1is linear, defined on 'Rr, and has rank r
(in particular, it is injective), while TM(g(x)) is an r-

dimensional subspace of R". Therefore, we need only demonstrate

that Dg(x)]Rr c TM(g(x)) in order to prove (i{). If r = n, then
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Tu(g(x)) =R", and the result is obvious, so we may suppose that
n . q =T

r <n. Let Ug(x) CR" and og(x) €C (Ug(x)JR ’) be as in

[vi.3). Let Qx C Q2 be an open neighborhood of x such that

g(Qx) C Ug(x)' Since g(R) C M, we have g(Qx) C MU

g(x)’ whence : ' 1

og(x)(g(y)) = 0 for each y € Qx. The composite function theorem

then shows that D¢g(x)(g(x))ong(x): RE +R™T is the zero

N e

operator, so D¢g(x)(g(x))(Dg(x)a) = 0 for each o €ERF. By
[vI.6], Dg(x)a € ker D¢g(x)(g(x)) = TM(g(x)) for each a GlRt,

L.e., Dg(x)]Rr c TM(g(x)), as required.

To prove (ii), simply note that, by (i), Dg(x) takes any :
(r)

i ?

basis for R® to a basis for Tn(g(x)), and that g,i(x) = Dg(x)e

for 1 =1,...,r. a.

[vi.12] NOTA T I O N. In the setting and notation of Proposi-
tion [VI.1ll],we shall denote the inverse of Dg(x): R' - TM(g(x))

by {Dg(x)}-l: Ty (8(x)) - R".

(ViI.13] PROPOSITION. Let @, & CR" be open sets, 4
f: Q-0 bedn cP(@@RT), M an (r,n;q)-manifold, and

g: Q-+ M be p-regular. Set g := gof: Q ~+ M. Then

(<) JE = |J£|;

(<L) 4§ £ 48 p-regular, then g 48 p-negular, and the

equality Jg(x) = Jg(£(x))+|Jf(x)| holds fecn each

x € Q.
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PROOF. See Fleming [14]); although his proof is for the case
Pp=1, 1its extension to the case of an arbitrary positive integer

p or p =« 1{is trivial, under the hypotheses given above. 0.

We next present an important method for constructing manifolds,

by formalizing an example appearing in Fleming [14].

{(vi.14] LEMMA. let r,n €N with r <n, and q ENi{=}. Let
A= (11,...,1r) be an increasing r-tuple of {ntegerns chcsen gaom
{1,...,n}, and (jl,...,jn_r) the {ncreasing (n-r)-tuple
complementary to A 4n {1,...,n}. Llet @ CRY be an open set,
and ¢ € cq(Q;]Rn'r). Degine G: @ +R" by setting

ok

(x) := ik, k=1,...,r,

gon each x € Q.
jk - k,~
G (x) = ¢ (x), k=1,...,n-r

Then

(£) G(q) 48 an (r,n;q)-manifold;

(L) 6 48 q-reguwlan:

(Lid)  with 2, | R" + RY denoting the projection map
x - xA . (xil,...,xir). ¢ L G(a) » Q2 «» just
’:')‘I G(R), 40 G s a homeomorphism of Q onte
G(Q).

PROOF. (i) We show that G(f) CR" fulfills all requirements
A i1 ir
x seeesX ) EQY, L.e.,

of [VI.3]. Set U := {x€R"] 1= (x




e A T Rt e e e 0 ¢

U= = (). Since § 1is open in R" and EA is continuous,

UCR" is open. Define ¢: v -Rr"T by setting

3
0k(x) =X k—¢k(x)‘), for each x€U, k=1,...,n-r.
Obviously, ¢ € Cq(UﬂRn-r). We have

£ 2 py
°’i (x) = -¢,k(x )' k= 1,-».,1‘
k x €U, 2 =1,...,n-r.

o (x) =6%  x=1,....,nr
Iy k

It follows that, for x € U, the determinant of the (n-r)x(n-r)

submatrix of (0} (x))

j 1<i<n-r,1<j<n consisting of the columns
— — k4 —_—

indexed jl,...,jn_r is equal to one. Thus, rank D¢(x) = n-r
for each x € U. Observe next that G(Q) = {x € U] &(x) = 0}.

For, suppose first that x € G(Q), £.2., x = G(X), X € Q. Then
1 1

x* = (G 1(%),....6 (X)) =X €Q, so x€U, while ¢*(x) =

g 0, 0.0 1

x L=ot(xM = 6t -et M

¢2(i)-¢2(i) =0, for ¢ =1,...,n-r.
Thus, x€ U and ¢(x) = 0. On the other hand, if we begin with

A jk k, X
x € U for which ¢(x) =0, then x" € G and x = ¢ (x"),
A I A 1
for 2 =1,...,n~r. Thus, G(x") is defined, and G (x ) = x

e

k

J
for k=1,...,r, G k(xx) = ¢k(xx) = X for k= 1,...,n-r, so

G(x") = x, and x € G(Q).

Now, suppose x € G(R). Then U 1is an open neighborhood of
x, ¢ € Cq(U;Rn-r), Dé(y) has rank n-r for each y € U, and
G(A)W = G(R) = {y € U[ ¢(y) = 0}. We conclude that G(2) is an

(r,n;q)-manifold.
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(ii) Referring to ([VI.9.ii], we have just seen that G
takes 2 onto an (r,n;q)-manifold. It is a simple matter to
check that G € Cq(Q;Rn) and that G is injective. Further, for

x€Q and 2 =1,...,r, we find

T i n~r j
G, (0 = § 6X@we™s T ¢ Be™
' k=1 . :Lk m=] 2 jm

(), " m o, (n) j
=e, '+ ) 4,,(Xe,, ;
il m=1 . jm

so that the coefficient of ein)A...Aein) in the expansion of the
1 T

product G,l(i)A...AG,r(i), {.e., the Ath component of the .

e e

latter, is just 1. This implies that JG(x) := |G,l(i)A...AG,r(ﬁ)| #

0, so, by [VI.10.a], rank DG(x) = r for each X € Q. G is

q-~regular.

- A - il - ir -
(111) If x€Q, ("] G@M)(G(X)) = (6 “(x),...,6 (X)) =

%. If x € G(R), it has been shown that x' € @ and o(x) = 0,
whence G(xk) = x, Therefore, G((EA| G (x)) = G(xx) = x.

1.2 1,

This proves that G~ = ="| G(Q2), so G G(R) -~ Q is

continuous. a.

Regular transformations generated as in [VI.1l4] are homeo-
morphisms (into). In fact, any regular transformation possesses
this property (we already know this to be true in the case r = n;

cf., [VI.10.bl):

[VI.15) PROPOSITTION. Let o beopenin R°, M an ¥
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(r,n;q)-maigold with r <n, and g: Q-+ M be p-regublar. Then

(<] g: Q=M L& an open mapping;

(<L) g Q= g() 48 a homeomeaphism.

PROOF. (i) Let us show first that g(Q) is open in M. For
this, select x € Q2: we prove that x possesses an open neighborhood
Qi C Q@ such that S(Qi) is open in M, whence the fact that g()
is open in M shall follow immediately. Llet U ,., CR", ¢ ,.. €
g(x) g(x)
Cq(Ug(i)ﬂRn‘r) be as in [VI.3]. By the implicit function theorem, |
there exist an open neighborhood Uo c Ug(i) of g(x), an increasing .

r-tuple A = (4 ir) of integers in {1,...,n}, an open §
i

100

neighborhood V CR' of g(i)x, and a function ¢€Cq(vo;mn-r)

0
such that
{(x€uU| ¢ ,.(x)=~0}={x€ER x €V ko kxhy
0 8(;‘) : X 0’ ¢ ’
(1)
k=1,...,n-r},
where (jl""’jn-r) is the increasing (n-r)-tuple complementary
to A in {1,...,n}. Note that, since MW ,., = {x € U_,., |
g(x) g(x)
0g(i)(x) = 0}, ‘
MU, = {x € UOI °s(i)(X) = 0}. (2)
Define, as in [VI.1l4]), G: Vo -+ R" according to
1
G EH 5%, k=1,
for each y € Vo (3)

I . )
G k(y) tm ok(y), k=1,...,n-r,
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~

It is easy to verify, using (1) and (2), that G(Vo) = MWUO. Clearly,
with the necessary changes in notation, the hypotheses of Lemma
[vI.14] are fulfilled in the present setting, so we can assert
that G is a q-regular homeomorphism of V

inverse G-1 = Ekl

o onto PFMO, with

0o~ VO' Now, MWUO is a relatively

open neighborhood of g(X) in M, so there is an open neighborhood

(MPUO): MU

ﬂi CQ of x for which g(Qi) c M“UO. We can write g(Qﬁ) =
G(G-l(s(ﬂi))) = G(Ex(g(ﬂi))), so if we prove that EA(g(Qi)) <V,
is open (in R’ or Vo), we shall have g(Qi) open in MﬁUO
(since G 1is a homeomorphism), hence open in M (since U0 cRr"
is open), which is the desired result. To show then that EA(S(QQ))

is open in W', first define f: 2 -RY by f := E)‘o(g] 2.)-

~A
0 and = (MWUO) C VO’ 0’ and it is
-1

easy to see that g Qi = Gof, in view of the fact that G ~ =

| (M"U)) . The injectiveness of g and 2

Since S(Qi) C MU f(Qi) cv

(Mﬁuo) imply that

f is injective, while it is clear that f € Cp(Qi:Rr). Whenever

>

€ Qe we find Dg(y) = DG(f(y))oDf(y); since rank Dg(y) =r,
we infer that rank Df(y) = r. Thus, f: Qi +R' is p-regular,
so (ef., [VI.10.b]) EA(g(Qi)) = f(Qi) is open in R'. As noted,

the proof that g(?) 1s open in M 1is complete.

Now, to prove (i), let © CQ be open. Obviously, g| @
is p-regular, so the reasoning just concluded, with Q replacing
Q and g| Q 1in place of g, shows that g({) 1is open in M.

Thus, g: Q + M 1is open.

(1i) We need only verify 3-1: g(d) - & 1is continuous,
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4.¢., that g: @ - g{(%) 1is open. Butr the latter fact follows

directly from (i). a.

We should like to identify conditions sufficient to ensure
that the image g() CR" of an open set CR" under a function
g: Q +R" be an (r,n;q)-manifold (for r < n; the case r = n

is already taken care of). The following fact allows us to do this.

(vi.16] LEMMA. Llet r,n€N with r <n, and q € NU{=}.
Suppcse that Q 4s open 4n ]Rr, and g € c(aR™). Llet x € ¢
with rank Dg(x) = r. Then thetre exists an open neighbcetheed 3

x, 2 C Q, such that g(Qx) 4 an  (r,n;q)-manifold.

PROOF. If r = n, the proof follows from the inverse function
theorem, so we suppose r < n. Since Dg(x) has rank r, there

is an increasing r-tuple X = (il,...,ir) of integers in (1,...,n]
such that ng(x) # 0, where gx € Cq(QﬂRr) is the function

X =+ (gil(x),...,gir(x)), x € . By the inverse function theorem,
there exists an open neighborhood Qx CQ of x such that gx(ﬁx)
is open in R', gé 1= gA[ Q

-1

2 A q, X . 4 :
g (Qx), and 9 € C'(g (QX)JR ). Let (Jl"°"jn-r) be the

< is a homeomorphism of Qx onto

increasing (n-r)-tuple of integers complementary to A in

{1,...,n}, and define G: g*(ﬁx) +R® by

(y) := vy, k=1,...,r,

\

£ € A I
jk jk }-1 or each y€g( x)
G (y) H 4 0(80 )(Y)y k = 1,"'9n—t
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Since g o(g0 ) € Cq(g (Qx)), for k=1,...,n-r, and g'(Qx)
is open in ?Rr, we can apply Lemma ([VI.l4] to assert that

G(g)(Q)) is an (r,n;q)-manifold.

We claim that g‘ Qx = Gogé; once this has been substantiated,
there shall follow g(Qx) - Gogé(nx) = G(gx(ﬂ)), and the proof i
shall be complete. Suppose, then, that y € Qx- For k=1,...,r, /
i i i
A by A A
g “() = @ W = (g = ¢ Mgh(») = (Gegy) K,
while, for k =1,...,n-r,

3 S At 3 ;
g “(y) = 8 “olg) degy(y) = G “og)(y) = (Gogg) “(v),

whence it does follow that g| @ = Gogé. a.

(vI.17] PROPOSITION. Llet r,n€N with r <n, and
q ENU{=}. Llet 9 be non-void and open in RF. Suppcse that
g: o -+R" aud
(<) g: Q ~ g(Q) 448 a homeomorphism,
(i) g€ ciamrM,
and

({if) rank Dg(x) =r 4on each x € Q.
hen  g(R) 4% an (r,n;q)-manifold, and g 45 q-regulan.

PROOF, In view of conditions (i)-(iii) on g, the gq-regularity

of g will follow as soon as it is known that g(2) is an
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(r,n:q)-manifold. To prove the latter, choose x € 2. According to
[vI.16], there exists some open neighborhood Qx C 2 of x such
that g(ﬂx) is an (r,n;q)-manifold. Since g: & -+ g(i) 1is a
homeomorphism, g(Qx) is relatively open in g(f) and, of course,
contains g(x). Thus, each point of g({) possesses a relatively
open neighborhood in g(f) which is an (r,n;q)-manifold. As we
pointed out in ([VI.4.b], this implies that g(R) itself is an

(r,n;q)-manifold. n.

As promised, we introduce the idea of a ccotdinate system in

a manifold.

{fvi.18] DEFINITIONS. Let M be an (r,n;q)-manifold
(r < n). A non-void relatively open subset U of M is called a
coorndinate patch on M 1iff there exists a function h: U +R"

such that

(1) h(U) 1s open in ]Rr,
(14) h: U+ h(U) 1is a homeomorphism,
(i11) bl e cdhw ®Y,

and
(iv)  rank Dh-l(x) = r for each x € h(U).
Whenever U 1is a coordinate patch on M, and h: U +R" satisfies

(1)-(iv), h 1is called a coordinate gunction ¢t U, and the pair

(U,h) 1is called a cooadinate system <n M. B.
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The inverses of q-regular transformations generate the

coordinate systems in an (r,n;q)-manifold:

[VI.19] PROPOSITTION. let M be an (r,n;q)-manifcld.
A non-vodid subset U CM 44 a coorndinate patch on M 4§ U = g(2)
for some q-regulan thansformation g: Q - M, where Q 48 open

in RE.  In the Latten case, (U,g'l) {8 a coondinate system in M.

PROOF. If U 4is a coordinate patch on M, then U = h-l(h(U))
for some coordinate function for U. h(U) is open in Rr, and it

is clear that h-l: h(u) - M is gq-regular.

Conversely, suppose U C M 1is non-void, and there exist an
open set Q CR' and a q-regular transformation g: Q =+ M such
that U = g(Q). By [VvI.15] {or [VI.10.b], in case r = n),

g: 9+ M is open, and g: 2~ g(Q) is a homeomorphism. Thus,
U= g(?) is open in M, and it is a simple matter to check that
g-lz uU-qQ= g-l(U) is a coordinate function for U, 4{.e., that

(U,g-l) is a coordinate system in M. a.

In addition to providing another criterion which can be used
to identify an appropriate subset of some R® as a manifold, the
following theorem asserts that any manifold has sufficiently many
coordinate patches to form a covering of the manifold. 1In fact,
the latter property characterizes the manifolds amongst all subsets

of a given Euclidean space.

(vI.20] THEOREM. Llet r,n€N with r <, and q € NV{=}.
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A nen-void set M CR™ 45 an  (r,njq)-manijeld {44 thete exists a

gamily of pairs (W b)Y g such that

(<) v C M L85 non-vedd and nelatively cpen, gotv eacn

1€ 1, and {U1}1€I 48 a coverdng cf M,

[ii) gon each €1, h: U + R 48 a homeomespivism cf
U onto an open set in R", such that h?l €
clh (U)®™, with rank DhT'(R) = r fen each

x € hl(UI).

PR OO F. Suppose first that M is an (r,n;q)-manifold. If r = n,
then {(M,1)}, where i: M +R" 1s the identity on M, fulfills
the requirements of (i) and (ii), so we may suppose r < n. We shall
show that each point of M 1lies in a coordinate patch on M, 4.c.,
whenever x € M, there is a coordinate system (ﬁx,hx) with

x € ﬁx. The collection {(ﬁx,hx)}xEM shall then fulfill the require-
ments. Then choose x € M. Let UxCIRn and @xe Cq(Ux;IRn_r)

be as in Definition [VI.3]. We repeat the construction carried out
at the beginning of the proof of ([VI.15): according to the implicit
function theorem, there exist an open neighborhood Uo c Ux of x

in Ifh an increasing r-tuple ) = (il,...,ir) of integers in

{1,...,n}, an open neighborhood V CIRF of xx, and a function

0
¢ € Cq(VoﬂRn~r) such that

J
yk

(yeul ¢ (=0l =(yer"| y ev = s(yM),

O!

k= 1,...,n-r},
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where (jl"°"jn-t) is the increasing (n-r)-tuple complementary

to A in {1,...,n}. Once again, we have MﬁUO = {y €YU

and G(Vo) = M“Uo, where G: V. +R" is defined by

0
i
- -k
Gk(y) =y, k=1,...,r,
for each y € Vp-
jk - k, -
G (y) :=4¢ (%), k=1,...,n-r

According to Lemma [VI.1l4], G: V0 + M 1is a q-regular homeomorphism

of the open set VO CR" onto the relatively open neighborhood

of x in M, with G 1: M‘-U0+R' being just =] (reg).
A| (M“Uo)) is then a coordinate system in M,

~
M UO

Clearly, (MFUO, z
with x € MﬁUO. As noted, this implies the necessity of the stated

condition.

To prove the sufficiency (now, r < n), suppose that there

exists {(Ul’hx)}tel with properties (i) and (ii). Choose x € M,

_1-

then 1 € 1 with x € Ul. Then hl(Ul) is open in 'm’, hl

hl(Ul) - Ul is a homeomorphism, with h:l

€ cih (U)RY and
rank Dh?l(ﬁ) = r for each y € hl(Ul). Proposition ([VI.17] allows
us to conclude that Ul - h:l(hl(U1)) is an (r,n;q)-manifold.
By (i), U1 is open in M. Thus, each point of M 1lies in a

relatively open subset of M which is an (r,n;q)-manifold, whence

M itself is an (r,n;q)-manifold (cf., [VI.4.b]). o.

It is important to point out the necessary relationship
between coordinate systems with "overlapping" coordinate patches.

We shall consider only the case r < n, since the inverse function
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theorem can be used to prove the corresponding statement for r =

n.

[vI.21] PROPOSITION. Llet M bean (r,n;q)-manijcld,

r <n, and (Ul’hl)' (UZ’hZ) coordinate systems in M with

Ulﬂuz ¥ ¢. Dejine
. -1 ] r
015 ¢ hlo(h2 | hz(ulﬁuz)). hz(Ul’\Uz) R,

-1 r
o= &) . -
¢51 3= hy0(hy | hy (U;70)): by (U,N0,) ~R.

Then
. . r
(£) b, (U,00,) and h,(U,70,)  axe cpen in R,
.. . . A '
(44) 91, 45 a homeomonpihism o4 h,(U,NU,) onte h (UNUY),
~1
and 415 = 451s
(L) 12 and ¢, are q-regular,
“and

(4v) hll (u,fuy) = ¢120(h2l (u,NU,)),

-1 - -1
L CRA UV T
h

o =
by = e 0t | (uynu,)),

-1 ' A - 1l
hy | h,(UNU,) = h "0s,,.
PROOF. (i) Since Uz is open in M, Ulf\U2 is open in U
A r .
Thus, hl(ul Uz) is open in R, since hl' Ul - hl(Ul) is a

homeomorphism and hl(Ul) is open in RE. Similarly, hz(UlﬁUz)

is open in RF.

1
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(i1) This is obvious.

(iii) Let us show that, ¢, 1s g-regular: since we know

that ¢,, is injective, it suffices to show that each x € hz(UlﬁUz)
has an open neighborhood Vi C h2(U1ﬁU2) such that ¢12| V* €
cq(vigkr), with rank D§ ,(§) = r for each § € V.. Then, choose

- -1
AP -
x € hZ(U1 Lz). Set x h2

also have x = h11(¢12(i)). Let Ux CR® be an open neighborhood of

(x). Since ¢12(i) = hl(hgl(i)). we

x, and ¢ € cq(uxaR“'r) as in Definition (VI.3]. Let U, C U_

0

l
be an open neighborhood of x, A = (il,...,ir) an increasing %
r-tuple of integers in {1,...,n}, V0 CR' an open neighborhood of -

xA, and ¢ € Cq(VoﬂRn-r) such that (

MU, = {y € uol ¢, (y) = 0}

j .
-{yeanl yxevov Yk'tt’(y)‘), k'li'--yn-r}v

where (jl""’jn-r) is the increasing (n-r)-tuple complementary to
A in {1,...,n}. We can find an open neighborhood Ql C hl(UlﬁUz)

of ¢12(i) such that hil(Ql) < MU and an open neighborhood

0’
2, C hy(U,) of X such that h;'(2,) C MW, since h ' and
h; are continuous, MTUO is a neighborhood of x in M, and
X = h;l(i) - hil(clz(;‘))' We define f : 0 +R', £, 0 +RY by
£, == 2ol a),
£, = s*o(hgll 2,).

Just as in the proof of (VI.15], using the auxiliary function
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-1 )
P by = eefy

t and h;ll Q, = Gofz, and so that fl and f2 are gq-regular;

the details can be easily supplied, so we omit them here. Using the

G € cq(vogR") given by (VI.15.3), we can show that h

inverse function theorem (cf., [VI.10.b]), it follows that fi(Qi) i

is open in ]Rr, and f;]‘: fi(Qi) +RY is q-regular, for 1 = 1,2,

Now, £,(&) = (057 (R) = 2 MM 0, (00)) = £,(6),(0) € £,(2)),

JA. R

so fl(Ql) is an open neighborhood of fz(i), showing that we can

choose an open neighborhood V. C 2, of x such that £,(v0) ¢

2
Then fIl(f2(§)) is defined whenever y € V., and it is

Ak

fl(Ql)'

a simple matter to check that ¢,,(y) = f-l(f (¥)) for each
12 1 2 ,

2 and fIl are q-regular, we can conclude that

Cp— ) = :
Vi €C (ViJR ) and rank D¢12(y) r for each y € Vi.

y € Vi' Since f

9151
As noted, this completes the proof that ¢12 is gq-regular. The k

proof that ¢ is q-regular can be given in a similar manner or
21

by simply noting that ¢21 = ¢;;.
(iv) These equalities are easy to check. o.

fvi.22] REMARK, Suppose that M 1is an (r,n;q)-manifold,
and (U,h) {is a coordinate system in M. It is clear that if
UCU is open in M, then (, h| U) is also a coordinate
system in M. Also, whenever ¢: h(U) +RY s q-regular, then }

(U,¢ch) 1is another coordinate system in M.

We turn next to the definitions, and certain elementary

properties of, classes of smooth functions on a manifold into a

Euclidean space.




(1)

(i1)

(111)

mEN, k€N =} and f: M-R .
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m

£ e CKQMR™) 4iff the function foh > 4is in

[VI.23] DEFINITTIONS. Let M be an (r n;q)-manifold,

Ck(h(U):]Rm) whenever (U,h) 1is a coordinate system

in M.

Let f € Ck(M;]Rm) and x € M. Then we define fi¢

nank 0f £ at x to be rank D(foh 1) (h(x)),
where (U,h) 1is a coordinate system in M with
Further, we define the differential of £ at x

be the linear operator Df(x): TM(x) - R" given
Df(x) := D(£oh™1) (h(x))o(ph ™ (n(x))) L,

where (U,h) 1is a coordinate system in M with

x e U.
to
by

@9

X € U (recall that we established, in [VI.12], the

notation {Dh-l(h(x))}-lz _'I'M(x) +R" for the inverse

of the operator Dh-l(h(x)) taking RY onto TM(
since h-]': h(U) + M 1is q-regular; cf., [VI.11]
Let £ € CKMER®). We define Jf: M~ [0,=) vda

[DE(x)T, (x)A. .. ADE(x)T_(x)]|
JE(x) == 1 u
) |Tl(x)/\. . .7\Tr(x) |

for each x € M,

where {Tl(x),...,Tr(x)} is a basis for 'I'M(x),

each x € M.

x),

).

for

(

)

Py
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(1v) f: M->R" is a k-imbedding iff

(1) £f: M- £fM) is a homeomorphism,
(2 £e c*umrM,
and

(3) the rank of f at x is r, for each x € M. ®H.

[VI.24] R EMARKS. Maintain the notation of [VI.23].

h.),

(a) Suppose that f € Ck(MﬂRm) and x € M. Let (Ul, 1

(Uz,hz) be coordinate svstems in M, with x € Ulﬁuz. Then

-1 -1 A TN {
(th2 )(hz(y)) = (fchl )Ovlz(hz(y)), for each y € Y, U2, with

as in [VI.21]. Since ¢;, € cT(n,(U,"U,);R),

°12 12

D(£on;™) (hy (1)) = DCEoRTY) (h, (x))oDey , (hy(x)) 1)

since ¢12(h2(x)) = hl(x). Again by [VI.21], rank Dclz(hz(x)) = r,
so we conclude that rank D(fohzl)(hz(x)) = rank D(fohIl)(hl(x)).

Thus, the rank of £ at x 1is well-defined in [VI.23.ii].
(b) Continuing the setting introduced in (a), we can write
D8, (h, (x)) = (DA (h, (%))} ophI L (h, (x))0Ds , (h, (x))
1272 1 1 1 1 12772
= (oh71(h, 0) 1 en(nTtos. ) (h, (x))
1 1 1 12 2

-1 -1 -1
= {Dh1 (hl(x))} oDh, (hz(x)),

so (1) gives
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D(£oh31) (h, (x))o{Dh;  (h, (x)) } 7

D(fohzl)(hl(x))0D¢12(h2(x))o{thl(hz(x))}_1

D(£ORT ™) (hy ()0 {Dh T (h) (x)) 7T,

which shows that Df(x) is well-defined by (VI.23.1). Observe that,
since {Dh—l(h(x))}-1 takes TM(x) onto ‘Rr, it follows from

(VI.23.1) that the rank of f at x 1is simply equal to rank Df(x).

T ‘ T
(c) Let {Tli(x)}i=l and ‘TZi(x)}i= be bases for TM(x).

1
It is shown in Fleming [15] that there exists a constant a € R
such that TZl(x)A"'ATZr(X) = aTll(x)A...ATlr(x) and
Df(x)T21(x)A...ADf(x)Tzr(x) = an(x)Tll(x)A...ADf(x)Tlr(x). From

this, it is clear that Jf(x) 1is independent of the basis chosen to

compute it by (VI.23.2), hence that Jf is well-defined.

(d) There is a consistency question which should be resolved:
when M is an (n,n;q)-manifold, {.e2., a non-void open set in Kfu
and f € Cq(MdRm), then Jf: M+ [0,») has already been defined,
in [VvI.9.1). It turns out, cf., [VI.28], 4nfra, that CcI(MER™ =
Cq(HﬂRm) in this case, from which it is easy to see that the

definitions [VI.9.i] and [VI.23.iii] are in fact consistent.

(e) Observe that Jf(x) > 0 iff rank Df(x) = r, iff the
rank of f at x is r. For, if Jf(x) > 0, then

DE ()T, ()A.. ADE(x)T_(x) # 0, sc {Df(x)'l‘i(x)};_l is linearly

independent, by the properties of the exterior product. Thus,
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rank Df(x) > r. But dim TM(x) = r, so we always have rank Df(x) <
r, so equality must hold. Conversely, if rank Df(x) = r, then
Df(x): TM(x) +R™ is an injection, since dim TM(x) = r. The

linear independence of {Ti(x)};-l then implies the linear

T

independence of (Df(X)Ti(X)}ial’

so Df(x)Tl(x)A...ADf(x)Tr(x) ¥ 0,

and Jf(x) > 0.
(f) Let (U,h) be a coordinate system in M. h-lz h(u) -~

n

R® is gq-regular, with h S(h(U)) =U C M. From [VI.11], the collec-

tion {h:i(h(x)) = DI*1.1(h(1tc))e§-r)};:_1

each x € U. We find, from (VI.23.1), the especially simple form

forms a basis for TM(X), for

Df(X)h:i(h(x)) - D(foh-l)(h(x))eir) - (fon™h), (X)), 2

for the images of R® of these particular basis vectors, for

fe CYMmR™, i1 =1,...,r, and x € U. Consequently, we have the

representation

1
)

| (gon™),  (hGIA. L ACER™),_(h(x)) |

|h:i(h(x))A...Ah:i(h(x))[

Jf(x) = , for each x€ U, (3)

valid whenever M is an (r,n;q)-manifold, (U,h) is a coordinate
system in M, and f € Ck(MﬂRm). 0f course, {h:i(h(x))}I'l
is linearly independent, so the denominator in (3) is non-zero,

for each x € U.

[VI.25] PROPOSITTION. let M be an (r,n;q)-mandfcld,

and f € Ck(M;Rw). Tren




w3l
(L) £ 48 continuous:

i) JE 48 contlnuous.

PROOF. (i) Let (xn)l

some x € M. Let (U,h) be a coordinate system in M, with x € U.

be a sequence in M, converging to

Then U is a relatively open neighborhood of x in M, so X €v
for all n greater than some n, €N. We have 1lim h(xn) = h(x),

n-+

1

and so, since foh - € C(h(U)R™),

lin  £(x) = lim (th'l)(h(xn)) = (£oh Yy (h(x)) = £(x).

n -+ n+ o

Thus, f 1is sequentially continuous, hence continuous, on M.

(ii) Choose Xy € M. Let (U,h) be a coordinate system in

M, with x, € U, For each x € U, Jf(x) 4is given by (VI.24.3).

0
Now, x> h:i(h(x)) is in C(URY), xi» (foh-l),i(h(x)) is in
C(Uﬂkm), for i = 1,...,r, while (ul,...,ur)|» ulA...Aar is
continuous on either @®")T 1into ]R: or ®M' into ]R‘:, as
the case may be, and the norm on any :mi into [0,») 1is also
continuous. Since rank Dh-l(h(x)) = r for each x € U,
h:i(h(x))A...Ah:i(h(x)) # 0 for each x € U. These facts, coupled
with (VI.24.3), show that Jf 4is continuous on U, hence, in

particular, at X;- Then Jf 4s continuous on M. 0.
The following improvement of [VI.25.1] is important.

(VI.26] PROPOSITION. Llet M bean (r,n;q)-mandiicld,

and f € Cl(M;mm), for seme m €W. Then, whencves K 48 a
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compact subset ¢ M, f£| K 4s Lipachitz continucus, L.e., thete

exists an a g 0 such that
Gy -fv) 1 < A g ly,=vq 10 fer  y.y, € K. (1)

PROOF. Select any x € M. As in the proof of Theorem [VI.20],

we can find an open neighborhood on of x in R™ and an increasing /1
x

x P
r-tuple Xx (il,...,ir) from {1,...,n} such that (wx’kx) is a i

coordinate system in M, where
(2)

M’on. (3)
Ax Xx
Thus, kx(wx) =z (MWUOX) is an open neighborhood of x

A
z x(x) in Rr; let € denote a positive number such that

A
| B: (x x)- C kx(Wx), and then let 6x > 0 be such that both
x
A
n n r x
Béx(x) C on and kx(MﬁBsx(x)) C Bex(x

) hold. Note that kx

is Lipschitz continuous on wx: indeed, whenever M2 € Wx,
A A

Ik (y)-k (y) ] = |2 My -2 Kyl < v,y (%)

1

Now, since f € CLiE™, we know that fok ' € Cl(k (W) &™).
In particular, the partial derivatives of fOk;l are bounded on the
A
x -
x(x ) of kx(wx).

compact subset B:

Let K be any compact subset of M, and choose a finite

}1:.1 C K such that the collection {M'B}

N
5 )1 of

set i=1

x (x
1 xi/Z i




open subsets of M covers K. Write § := min {dx /2}2‘1. Suppose
i

that y,,y, € K. Assuming first that |y2-y1] 5§, we have

>
n -

lf(yz)"f(yl) lm = (lf(yz)-f(yl)lm/l}’z-yl‘n)‘ [yz'yl‘n

(5)
. <32 sw JEO v,y
y € K
/
in which sup ]f(y)[m < w, since f€ C(M;R™, by [VI.25.1].
y€K i
Next, assume that 0 < |y2-y1ln < §. Denoting by j an element of
{1,...,N} such that y, € MB" (x,) €W , it is clear that we
1 8 j X, .
x./2 j
R )
n
€ C i -
also have y, € M'B; (x,) CW ., since [y,=x|, <
X, j
3
lyZ_yl,n+]yl-xj n S 6+6x /2 < 6x.' Moreover, we then have
h| h|
A Y
r xj n r xj

€ MO J)) < : s

kx (yl)’ kx (yz) Be (xj ), since kx M B6 (xJ)) B (xJ )
] ] * b *

by the first part of the proof. Consequently, we can apply the mean-

value theorem to write

Fok (k. (y,))-fok 1k, (v )]
xj xj 2 xj xj 1 m

-1,
|D(f0kxj)(2)(kxj(yz)-kxj(yl))lm

m r . 1/2
{ ) {(fOk'1>f2<z>}2}
i=1 2= 5

FOARIIRIN

| A

| A

k. (y)~k ()|
xj 2 xj 1°'r

A

.

At

Y27
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having used (4), where z 1is some point on the line segment joining

kxl(yl) and kxj(yZ) (which are distinct, since vy, ¥# yz), and
m r ~1/2-
A 1= max max { ¥ 3 {(fkal)fQ(i)}z}
i=] =1 P
z€B, (x P)” J

]
o

0
. Py

In any case, (1) holds with a, ¢ i= max {%- max [f(y)fm, AK f}» 1
’ yex ’ !

as (5) and (6) show. a.

(vi.277 PROPOSITION. Let M be an (r,n;q)-mandiicdd,
mEN, and k €ENV=} with k <q. let f: M +R". Then f€ L
Ck(M;]Rm) L84 there exists a fjamily of ccordinate systems ‘

covens M, and fohol €

{(U1’h1)}1EI in M such that {UI} 2

€1
k m
c (hl(Ul)ﬁR ) for each 1 € 1.

PROOF. From Definition [VI.23.i] and Theorem [VI.20], the

condition is obviously necessary.

Now, suppose {(Ut'ht)}\el is a family of coordinate systems
in M possessing the stated properties. Let (U,h) be any coordinate i

system in M: we must show that th-1 € Ck(h(U)ﬂRm). Choose

t
% € h(U), then 1 € I such that h ' (X) €U . Then UL # 9, B
open in U, and h(U1ﬁU) is an open neighborhood of x in R". {
Set ¢ := h o(h™l| (U NU)). Then ¢(h(U WD) € h (U), and, just

as in [VI.21], ¢GCq(h(Ulf‘U);Rr). Clearly, (fon™ly] h(u ") = ﬁ

(foh:1)0¢. Since it is known that foh:1 € Ck(hl(Ul)ﬂRm) and
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k < q, we conclude that (foh-l)] h(UlﬁL') € Ck(h(UlﬁU) ;]Rm).

Thus, foh-l is of class Ck in a neighborhood of each point of

1

h(U), so that foh™t € cX(h(v)RD). o.

[v1.28] REMARK. Let 2 CTR® be non-void and open, 4.¢., an

(n,n;q)-manifold (for any q € NU{=}). The single coordinate system

(Q,ig), where in: Q@ +R" 1is the identity on , covers Q.

Let f£: & - R". Directly from [VI.27], f € Ck(Q;IRm) for some

1

k € NW{=} 4iff foig € ck(iQ(Q)aRm), L.e., iff f€ ck(cakm).

Thus Ck(Q;IRm) = Ck(Q;]Rm), in this case, for each k € NU{=}.

[VI.29] PROPOSITION. Llet M bean (r,n;q)-manizcld,

N a (p,m;s)-manigold, and f € Ck(M;IRm), with £(M) ¢ N. Then
({) §on each x €M, Df(x)TM(x) C T (£0);

(L) 4§ p=71 and the nank 0§ £ at x€M 4 r, ¢t
JE(x) > 0, zthen Df(x)TH(x) -TN(f(x)), and Df(x)

48 dnjective.

PROOF. (i) If p=m, then N is a non-void open set in R"
and the result is trivially true, since, for x € M, Df(x):

TM(x) +R" = TN(f(x)). Suppose then that p < m. Choose x € M.
Let Ugi\y CR" be an open neighborhood of f£(x) and ¢, €
cs(uf(x)ﬂmm'P) be as in Definition [VI.3] for the (p,m;s)-
manifold N. Let (U,h) be a coordinate system in M with

x € M, Since f is continuous ([VI.25.i]), f-l(U )) is an open

f(x
neighborhood of x in M, while
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0 -1 ; - = e -1
¢f(x)((fuh Y (h(y))) ¢f(x)(f(y)) 0 whenever vy € U"f (Uf(x)).
Since h(Uﬁf-l(Uf(x))) is an open neighborhood of h(x) in Rr,

-1 k m s m-p .
* -
foh “ € C(h(U);R ), and ¢f(x) €C (Uf(x)JR ), the composite

function theorem shows that D¢f(x)(f(x))0D(f0h-1)(h(x)) is the

zero operator on R’ into RV P, Thus, for each T € TM(x), .
-1 -1 -1
D<bf(x)(f(x))0D(f0h Y(h(x))o{Dh “(h(x))} T = O,
or
Débf(x)(f(x))ODf(x)T = 0,

Since TN(f(x)) = ker D¢ (f(x)), by [VI.6], we conclude that

f(x)
DE(X)T € TN(f(x)) for each T € TM(x). This proves (1i).

(1i) Now we know that the rank of Df(x): TM(x) - R"
is r, dim TN(f(x)) = r, and, by (i), Df(x)TM(x) c TN(f(X)), so
we must have equality: Df(x)TM(x) = TN(f(x)). Since dim TM(x) =r

and rank Df(x) = r, Df(x) 1is injective. a.

It is essential to have a reasonable condition under which ;
the image of a manifold is also a manifold. More precisely, we have 1

the following statement.

[VI.30] THEOREM. Llet M be an (r,n;q)-mancfcéd, m€N,
and k €NU{=} with k < q. Suppcse that f£f: M->R" 48 a

k-imbedding. Then
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(4) £(M) 43 an  (r,m;k)-manifold;

(i£)  gor ecach x € M, Df(x): Ty (%) + R™ 48 an {nfecticn

taking TM(x) onte T (£(x));

£(M)

(Lid) £Y: £ » B 43 a k-imbedding;

{<v]  fon each x € M, the invernse 04 the bijection

DEX): Ty (x) » Ty (£(0)) 4s géven by pe L (£(x));

f(M)

(vl  for ecach x€M, Jfl(em)) = (Je) )t

PROOF. (i) We shall use Theorem [VI.20] to show that f£(M) 1is
an (r,m;k)-manifold. Choose a collection of coordinate systems
M
{(UI,h1)}1€I in M such that (Ul}lel
where U := f(U ) and h :=
1 1 1

covers M. Consider the

family of pairs {(Ux’ht)}1€I’

(fohzl)-l. Note that (foh‘-l)-1 takes f(Ul) onto h‘(Ul), and
is a homeomorphism between these twu sets, since h1: U1 ad hl(Ul)
and f: M- £(M) are homeomorphisms. Since U1 is open in M,

61 = f(Ul) is open in f(M). Thus, for each 1 € I, 51: 61 - RF
is a homeomorphism of the relatively open subset ﬁ\ onto ﬁl(ﬁl) =
h1(u1); the latter is open in :ﬁ?, by the properties of h1' We
can also write ﬂ‘ = hlo(f-ll f(tt)), for 1 € I. C(Clearly, the

collection (U }

Jer is a covering of f(M).

1

Now, choose 1 € I and consider ﬂ:l = th: : ﬁl(ﬁ‘) -

hI(U1) +R". We see immediately that ﬂ:l € Ck(ﬁ\(ﬁl)ﬂRm), since

1

f € Ck(M;Rm) requires that th: € Ck(h‘(vl)ﬂkm). Suppose that

x € ﬂl(ﬁ\) = h‘(Ul); because the rank of f at h:l(i) €M {s r,
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we have rank D(fohzl)(i) =r, {.e., rank Dﬂzl(i) = 7.

The existence of the collection {(ﬁl,ﬁl)}\EI with these
properties then shows, via Theorem ([VI.20], that f(M) is an

(r,m;k)-manifold; (i) has been proven.

It is clear that we have also shown that whenever {(Ul,hl)}1eI

is a family of coordinate systems in M, with {U‘} covering

-1.-1
M, then {(f(Ul),(fChl ) }zEI

1€1

is a collection of coordinate systems

in f(M) such that {f(Ul)}leI covers f(M).

(i1) Now, we know that f(M) is an (r,m;k)-manifold. Since
f € Ck(MﬂRm) and the rank of f at each x€ M is r, (ii)

follows from (VI.29.1ii].

(i11) We already know that f-l: £(M) f-l(f(M)) =M is a

homeomorphism. To show that f-1 € Ck(f(M)ﬂfS, select a family of

coordinate systems in M, {(U1’h1)}1€I' such that {Ux}1€1 covers

M. Then (C£(u),(foh’D)™Y) o

coordinate systems for f(M). According to [VI.27], the inclusion

is a covering collection of

f-l € Ck(f(M)ﬂf5 shall follow once it has been shown that

f-lo(fchzl) € Ck((fohzl)-l(f(Ul));Rp) for each 1 € I. But the
latter is clear, from f'lo(th'\'l) - h?l, (fch:l)-
1

1
(f(Ul)) hl(Ul).
h: € Cq(h‘(Ul)ﬂRn), for each 1 € I, and k < q. Finally, we
must verify that the rank of f.l at each point of f(M) is r.
For this, choose x € f(M), and let 1 € I be such that x € f(Ul),

wy=ly=1
where ((Ul'hl)}leI 1s as before. Then (f(U\),(f«h1 Y ) is a
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coordinate system in f(M) with x € f(Ux)’ so it suffices to show

that D(f-IO(thzl))((fohzl)-l(x)) = Dh:l((foh:l)-l(x)) has rank

r. But (foh:l) 1

-l(x) € hI(U‘), while Dh: (y) has rank r for

each 7 €h (U). Thus, £} is a k-imbedding.

(iv) Choose x € M. We know that Df(x) 1is an injection

taking TM(x) onto T (f(x)), and (because of (iii) and

£(M)
[vI.29.ii]) Df-l(f(x)) is an injection of Tf(M)(f(x)) onto

TM(x). Consequently, it suffices, for the proof of (iv), to show

that, say, Df_l(f(x))ODf(x) = i the identity operator on

TM(x) ?
TM(x). Let (U,h) be a coordinate system in M, w.'h x € U;

(E(U),(foh-l)_l) is a coordinate system in £(M), with £f(x) € £(U).

According to the definition in ([VI.23.ii], we have, on TM(x),
using (fon™H)™L « no(s7 (1)),
-1
Df ~(f(x))oDf(x)

= (£ Yo gon™d)) ((eon™) TL(E(x) )Vt Con™ Yy ((£on™Yy Lecx))) 1 7E

ob(£oh™2) (h(x))o{bh > (h(x)) } 72
= dh~ (b (x)) o (D(fon™Y) (h(x)) 1~ Lon(fon™ 1y (h(x))o{Dh L (h(x))} L

i ’
TM(X)
as required.

(v) Choose x € M. Let {Tl(x),...,Tr(x)} be a basis for i

T, (0. By (iv), DE(E(x))ODEGOT, (x) = T,(x), for 1= 1,...,r,

whence
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lDf(x)Tl(x)/\. - ADf ()T _(x) !
FTI1X5A...ATr(x)T

|07 (£(x))9DEGRI T, (A . ADETH(E(x))0DEGOT ()|

‘ [BEGOT, (R - FDEDT ()] =1
But Df(x) is an injection carrying TM(X) onto Tf(M)(f(x)), so
{Df(x)Tl(x),...,Df(x)Tr(x)} is a basis for Tf(M)(f(x)) (vhich also ,

shows that lDf(x)Tl(x)A...ADf(x)Tr(x)| # 0). In view of the
definition in [VI.23.iii], the preceding equality is just

Tex) I (E)) = 1. o.

[VI.31] R EMARK. Maintain the setting and notation of
[vI.30]. Let x €M, and (U,h) be a coordinate system in M,

with x € U. Since {h:i(h‘X))}I=1 forms a basis for TM(X)’ it

r
i=1 Te

since Df(x)h:i(h(x)) - (foh‘l),i(h(x)), for 1 = 1,...,r; cf.,

is clear that {(foh-l).i(h(x))} forms a basis for (f(x)),

[VI.24.f). Also, Jf(x) can be computed from (VI.24.3).

We shall prepare a statement concerning composite functions
in a somewhat restricted setting; as it turns out, this is all that

we require.

{(vI.32] PROPOSITION. Llet M bean (r,n;q)-madicld,

£: M+R" a q-imbedding, and g € CY(eM);RY), where i € Wi},

L <q. Then

(i) gef € ctaur®);
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(<4)  D(gof)(x) = Dg(f(x))oDf(x), fo1 each x € M;
(£id)  T(gof)(x) = Jg(f(x))oJf(x), fcn each x € M;

([dv) 4§ 8 48 an gL-imbedding, then gof 45 an

L-4mbedding .

PROOF. Note that £(M) is an (r,m;q)-manifold (and, if ¢g
is an f¢-imbedding, then g(f(M)) is an (r,k;%)-manifold), by 1

[VI.30.i].

(1) Let (U,h) be a coordinate system in M. Setting U :=

-1,-1 —ll

£(U) and h := (foh ) = ho(f £(U)), it is easy to see, as in 4

the proof of [VI.30.i]}, that (ﬁ,ﬁ) is a coordinate system in

f(M), since f 1is a qg-imbedding of M into R”. We know that !

1 1

g € e RS, so goht e c*G(DRY), <.e., (gof)onle

ct () B*) (obviously, h(U) = h(U)). Thus, gof € CX(MRY).

(1i) Let x € M. Choose any coordinate system (U,h) 1in

M such that x € U. Recalling [VI.23.ii], we have
-1 ~1 -1
D(gof) (x) := D(gefoh ") (h(x))o{Dh “(h(x))} ~, (1)
and
~1 -1 -1
Df (x) := D(foh ") (h(x))o{Dh “(h(x))} ~. (2)

Define the coordinate system (U,h) in M as in the proof of (i);

then f£(x) € U, and so
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-1

Dg(f(x)) := D(gch )(ﬁ(f(X)))'D{Dﬁ_l(ﬁ(f(x)))}.1

= D(gofoh ) (h(x))o{D(£h™1) (h(x)) )2 )
(according to [VI.12], {I)h-l(h(x))}-l denotes the inverse of
Dh™l(h(x)) taking B* onto T,(x), while {D(£9h™D)(n(x))}™"
denotes the inverse of D(th-l)(h(x)) taking R’ onto Tf(M)(f(x))).
Now, the equality D(gof)(x) = Dg(f(x))oDf(x) clearly follows from

(1), (2), and (3).

(iii) Let x € M; choose any basis {Ti(X)}§=l for ‘

TM(x). Then {Df(x)Ti(x)}Isl is a basis for (f(x)) (from F’

Teqn
[VI.30.1i]), so the definition [VI.23.iii], with (ii), shows t

that

|DCgof) (OT; A, . .AD(gof) ()T (%) |
J(gof) (x) := [T, GOA AT ()]

|Dg(£(x))DECx)T, (x)A. . .ADg(£(x))DE(X)T_(x) | ]
IDf(x)Tl(x)A...ADf(x)Tr(x)l

]Df(x)Tl(x)A...ADf(x)Tr(x)l
ITl(x)A...ATr(x)]

= Jg(£(x))-Jf(x).

Thus, (1ii) is proven.

(iv) Now, suppose that g is known to be an f-imbedding.

Then f: M-+ f(M) and g: f(M) - g(f(M)) are homeomorphisms, so

gof: M > g(f(M)) 1is a homeomorphism as well. We have already seen
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that gof € Ci(MﬂRk). Finally, since Jg >0 on f(M) and Jf > 0
on M, (iii) shows that J(gof) > 0 on M, whence the rank of
gof at x is r, for each x €M (cf., [VI.24.e]). These facts

show that gof 1is an f-imbedding. 0.

The following geometric fact is in accord with one's

intuition.

[vi.33) PROPOSITION. Llet M be an (r,n;q)-manifcld
which 45 clesed in R®. Llet x € R"™. Then thene exists at Least

one z €M for which
r (2) = dist (x,M) := inf (rx(z){ z € M}. (1)
Merecvet, wheneven z €M satisgdies (1), zthen
(x-zx) € NM(zx)’ (2)

PROOF. The first statement is, of course, well known (and
holds for any closed subset of 155: we can find a sequence in M,

L]
(zi)i-l’ such that rx(zi) + dist (x,M). It {s easy to see that
(zi):-l is Cauchy in 'Rn, hence converges to some 2z, which must
then be in the closed set M. Finally, r (2 ) = 1lim 1r (z,) =

X X { > ® x i

dist (x,M).

Now, suppose z, € M and (1) holds. Consider any 2 € M.

We compute

%x-Zli = i(x-zx)-(z-zx)l: - |x-le§+lz-lei—2(x~zx)0(z-zx),

L N VO BV




giving, since Ix-zx|n < lx-z]n, by (1),

2 2. 2 2
2(x—zx)0(z—zx) = {Ix-len—lx-zlnr+iz-zx{n < :z-zx!n. (3)

Now, choose any a € TM(zx)' By Definition [VI.5], there exists a
§ >0 and a function ¥ € CL((=6,8):R") such that y(s) € M if

lsl < 8§, y(0) = z.» and '(0) = a. Whenever 0 < s < §, (3)

i,
shows that
i
2(x-2,) o (4 (s)4(0)) < lu()-u(0) |2, -
2(x-zx)o{-(w(-s)-W(0))} 3_-|w(-5)-w(0)li’ % i
g
so E
|
z(x-zx).{‘l(s); (O)}f_ IW(S)‘\’J(O)ln‘} (5)‘; (0) , (%) !
n
and
2(x—zx)-{§"—(:f%§'§'iﬂ} :-lw(-s)-w(O)in-! (’23(0)‘ : (5)
n

Letting s - 0+ in (4) and (5) results in O :_Z(x-zx)oa < 0. Thus, f
(x-zx) is in the orthogonal complement of TM(zx)’ {L.e., 1is in

|
NM(zx) . o. i

There are, of course, standard techniques for constructing !
extensions to R" for smooth functions on an (n-1,n;q)-manifold.
We have need of a special result of this sort. It is essentially no

more work to consider manifolds of lower dimension, as well.

[VI.34] PROPOSITION. Let M bean (r,n;l)-manifcid,
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r<n, and g€ Cl(MdRm), with  sup |g(y)|m <e, let T bea
yEeEM

non-vodd compact subset of M. Then there exists a § € céaR“ng)

duch that g| r = g| I and

max  [g(y)| < sup gy - (1)
y e r" yEM

PROOF. Choose x € M. Just as in the proof of Theorem {VI.20],

we can find an increasing r-tuple of integers in {I1,...,n}, Ai(x),

and an open neighborhood U of x in R" such that (MﬁUx, EA(X){ [
MPUx) is a coordinate system in M, with x € M“Ux. Then
Ex(x)(MWUx) is an open neighborhood of xk(x) 1= EA(X)(X) in ]Rr, f

so we can choose o > 0 such that B: (xx(x)) C Ex(x)(MFUx) as
X

well as Bg (x) C Ux' Now, whenever y € Bg (x),
X X

b

,E)‘(x)(y)_s)\(x)(x),r - lsx(x)(y)_xk(x)lr < IY-XIn <o

so EA(X)(Y) € B: (xA(x)). Therefore, we can define g : B: ) =
. x

R" according to

gx(y) t= go(Ek(x)[ M“Ux)-loix(x)(y), for each y € B: (x). (2)
x

Now, g € CL(MEB™), so go(z'®] mux)‘lecl(s“x)(mux);mm),

whence By € Cl(Bg (x)ﬂRm). Since M”BZ (x) € MWUx, directly from
x x

(2) we have

gx(y) = g(y) for each y € M“BZ (%), (3) L
x [
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{.e., g, 1is an extension of g MWBS (x) to Bg (x). Obviouslv,

X X
(2) also shows that
- sup le, ("], < sup lety) | < swp  {e(yn)] . ()
y € B® (x) y € MU y € M
o}
X
N

Now, choose a finite set { }i-l C I' such that the collection

1
(xi)}I:=1 provides a covering of T'. For brevity, write
x
i
n
0i : Bo

(8"
o]

= A1.
(xi) and 8 '™ B, for each i€ {1,...,N}. TFor

X, i
i

N

convenience, we may, and shall, suppose that the covering {oi}i=l .

is minimal, {.e¢., no proper sub-collection of {01}§=1 provides a
cover for T, since it is clear that we can extract such a minimal
subcover from the original cover, if the latter does not already
possess this property. Thus, for each i € {1,...,N}, Oiﬁr $ ¢,

and there exists some z, € Oiﬁr such that z, € 05 if j € {1,...,N}
and j # i. Now, let ¥ be a locally finite Cm-partition of unity
for UT-I Oi' subordinate to {Oi}TSI (cf., Lemma [VI.49], 4n§ra).
Thus,

(1) ¥ < cu®Y,

(11) 0 <y <1, for each y € ¥,

Z
e

(iii) for each ¢ € ¥, there exists iw € {1l,..., with

supp ¥ C Oi .
¥

(iv) whenever K C UT-I 0i is compact, there exists an open

E
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set WC U§=1 Oi such that K C W and all but a

finite number of elements of V¥ wvanish in W,

and

(v) J ¥(x) =1 for each x € U?tl Oi.
vEY

Set

vy oi= {V € ¥yl w(T) # {0}};

since T is a non-void compact subset of N 0., properties (iv)

i=1 i
and (v) show that Wr is non-void and finite, and
J wx) = ¥ w(x) =1 for each x€T. (5)
Wewr ey
Define

¥, = {v € Wr| supp ¢ C 01},

*m H N -1
¥y, 1= {y € wrl supp v C Oj} {Ui-l Y

j ', for j=2,...,N.

k
Obviously, the collection {Wi}ztl is pairwise disjoint, and we have

€
{=1 Wi c Wr. But if Yy € v

{1,...,N}, j

r there exists a smallest integer in

such that supp y €0, , and it is clear that we

] Jw
must have, therefore, y € ¥, . Consequently, we conclude that
Ty
-« N
Wr (=1 Wi. (6)

It is also easy to see that, if 1 € {1,...,N}, ¥y # ¢. For,

recalling the properties of zy € OifW, introduced previously, we
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i r i

{1,...,N} and j # i, then ziG()

can choose v, € Y. such that v, (zi) $# 0, by (5); if j €

'y SO supp ¥ cannot lie
] zg y

in 0,. Thus, suppy CO0,, and ¢y € v., verifying our claim.
i zi i zi i ;

Each ¥, 1is clearly finite. Defining
Yy = Z ¥ for each i€ {1,...,N}, @)

it is easy to see that wi € C;OR“) and supp wi Cc Oi for each i,

while
N N
I ow@=1 [ wx=1] vx)=1 for x€r, (8)
1=1 1=1 ey ey
i T
by (5) and the properties proven for {V¥ }N Next, for each

i'i=1"
- n m
i€ {1,...,N}, define g;: R +R° by

wi(X)gi(X) if x € 01’
éi(x) o= 9

0 if xEO'i.

1 m ® .0
H c
Since g, €¢C (OiJR ), v, € COCR ), and supp vy 01, we must
have éi € C(I)Ckn;Rm) with supp éi c Oi, for each 1 € {1,...,N}.
Finally, set
N

g = ) & (10)
i=1

we claim that é has each of the desired properties. The inclusicon
g € CéORnﬂRm) is plain enough. To see that g is an extension of

g, observe first that
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gy(x) = ¥y (x) -8 (x) for each x€T and 1€ {1,...,N}. (11)

Indeed, suppose that i€ {1,...,N} and x€ : if x € C:YL, then
éi(x) = 0 and wi(x) = 0, while if x € Oi, then (3) shows that
wi(x) g(x) = wi(x)-gi(x) - éi(x). Thus, (11) is true. But then,

whenever x € ', 1in view of (8) we can write

N N
g(x) = | g (x) = { } wi(X)}g(X) = g(x),
i=1 i=1

whence g! I' = g| I'. Finally, to verify inequality (1), let

x ER": if x € UI;-l Oi’ then, using (4),

N
gl < T gyl

i=1
= ) ¥, (x)+]g, (x)]
| w0,y 17,
< sup ls(y)lm' ) ¥, ()
yEM {1| x€0, }
N
< swp Jg] - I 1 ¥
yEM i=1 UE‘*’i
< sup gy _;
- y e M . m
on the other hand, if x € (LJ;:_1 Oi)' = ﬁ?gl Oi, then
- N -~ :
g(x) = ] g (x) =o0.
i=1

Thus, (1) holds. a.

The development to this point provides sufficient preparation ‘
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for the definition and study of the Lebesgue measure and integral on

a manifold in some Euclidean space. Fleming [15] gives some

discussion of these topics, but his presentation is inadequate for
our purposes; a precise formulation is required here in order to meet

the exigencies of a number of lines of reasoning in Parts I-V.

We begin by citing certain measure-theoretic facts, the .
principal references being Hewitt and Stromberg [20], and Rudin [46].

The definition of a common measure-theoretic term will be set down

here only if these sources employ distinct definitions for that
term; otherwise, such basic terms will be used without preliminary .
comment. In general, we shall adhere to the definitions of Hewitt

and Stromberg [20].

(VI.35] DEFINITTION. Let X be a locally compact
Hausdorff space, and denote the o-algebra of Borel sets of X by
B(X). Let u be a measure defined on a o-algebra A of subsets

of X, such that B(X) CA. Then u is called a regulatr measutre iff

(i) u(K) < =, for each compact K C X,

(i1) u(A) = inf {u(U)| U 4is open in X, A C U}, for

each A €A,
and

(111) uw(U) = sup {u(K)| K 4is compact in X, K C A},

for each open set U C X. u. ’ \
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It turns out that a regular measure possesses a property

stronger than [VI.35.iii].

(vi.36] PROPOSITION. Let y be aregular measure
de§ined on a o-algebra A 0§ subsets of a Lecally compact

Hausdonfdf space X {40 B(X) C A). Then

u(A) = sup {u(K)| K 48 compact in X, K C A},
gor each A € A which {8 o-ginite with respect t¢ u.
PROOF. Cf., Hewitt and Stromberg [20]. a.

[vi.37] RECAPITULATTION: THE EXPLICIT
CONSTRUCTTION OF A REPRESENTING
MEASURE CORRESPONDING TO A GIVEN
RADON MEASURE. Let X be a locally compact Hausdorff
space. Let CO(X) denote the complex linear space composed of all
complex-valued continuous functions of compact support on X.
Recall that a Radon measure, or nonnegative Lineatr functional, on
X 1is a linear functional 1I: CO(X) +K such that I(f) > 0
whenever f € CO(X) and f > 0. Let I be a Radon measure on X.
Hewitt and Stromberg [20] contains the explicit construction, from
1, of a g-algebra M1 of subsets of X, and a measure 1 on

Ml such that

(1) 1(f) = I f dv, for each f € CO(X),
X

[ ._,_._,‘.A_
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(ii) B(x) € Ml,
(1ii) 1 1is regular,
(iv) (X'Ml’l) is a complete measure space,

(v) if ACX, then A€ M1 iff AKX € M\ for each

compact K C X,
and
(vi) if u 1s any regular measure on M1 such that

1(f) = J f du for each f € CO(X), then u = 1.
X
There are certain other technical results of the construction, which
we shall not give here; these results shall be used implicitly, in
the sense that they are used to prove other statements which we shall
later provide explicitly. 1In all such cases, we shall refer to the

work of Hewitt and Stromberg for the proofs.

In order to have a precise nomenclature, we shall call any
measure generated from a nonnegative linear functional on CO(X),
where X 1is a locally compact Hausdorff space, by the particular
construction cited above, a measure {in the sense 0§ [Hewitt and

Stromberg, §9].

Of course, the well-known representation theorem of F.
Riesz 1s an immediate consequence of the facts given above. Since
we shall need a number of other properties of the representing

measure whose existence is the assertion of the Riesz theorem, we
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have chosen the more detailed presentation of Hewitt and Stromberg

as our primary source, rather than merely stating Riesz' theorem.

It is important to note that in our terminology, the usual

Lebesgue measure on R" (n €N) is a measure in the sense of
[Hewitt and Stromberg, §9}. Indeed, one of the standard ways of
V.defining Lebesgue measure is v<a the Riemann integral on COCRn),
clearly a Radon measure. We shall denote Lebesgue measure on R"

by An (su that M}‘ denotes the o-algebra of Lebesgue-measurable
n

subsets of ]Rn) .

We next recount some facts concerning another familiar method

for constructing measures.

(vi.381 PROPOSITION. Llet (X,Au) be a measure space,

and v: X = [0,0] an A-measurable funciicn. Define My A+ [0,=]
by
”w(A) 1= J ¥y du = J =,V du, for each AEA, 1)
A X
Then
(<) My 45 a measure on A, and
- 2
deuw [fwdu, (2)

X X

gdor each A-measurable guncticn £: X = [0,=].

[4L) Whenever A € A and u(A) = 0, <then uw(A) = 0,
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1§ v >0, zhen u(A) =0 4§ A€ A with uw(A) =
0. Thus, 4§ ¢ > O, (X,A,uw) 48 cemplete 444

(X,A,u) 4s complete.

(i) 1§ £ 48 defdined Q-a.e. on X and 45 A-measurable,
then f € Ll(x'A’“q,) 66 fv € Li(X,A0);  An elthen
case, (2) hotds.

(<v)  Suppcse ¢ > 0. Then £ € Ll(x’A’”\p) if4 fy €
Ll(x,A,u),- in elthen case, (2) holds.

- {v) Suppose that

(1} X 48 a Locally compact o-compact Hausdori
space with B(X) C A,

{2) w 48 regulan,
and
1 . ..
(3] v € L1°°(x,A,u), ‘e, yEg € Li(XAW) fon
each compact K C X.

Then u v 48 negular and  o-f4nite.

PROOF. (i) cf., Rudin [46], Theorem 1.29.

(1i) The first statement is obvious. Suppose ¢ > 0,
A€ A, and UW(A) = 0, Then, since A4 0, 2,0 must vanish
p-a.¢. on X. Since y > 0, T, 0 u-a.¢. on X, <£.e., u(A) =
0, and the second statement is proven. For the third, let y > 0

and (X,A,u) be complete. Suppose A € A, uw(A) = 0, and B C A.

it dmes s emmrtbiatod Sz o Bl ok iR e




Then p(A) = 0, by what was just proven, so B € A, since (X,A,.)
is complete. Thus, (X,A,uw) is complete. The proof of the
converse is just as simple (and goes through even if ¢ 1is only

nonnegative).

(11i) We may suppose *mat f 1is defined on X and is A-

measurable. Then fv i1s A-measurable on X. From (2),

I | €] duw-J | €]+ du, so J |£] du, < = iff J | £
X X X X

Y du < =,

and the first statement of (iii) follows. 1I1f, say, fy € Ll(X,A,;),

the equality j f duw = J fy du follows from (i) and the definition
X X

of the integral of a complex~valued function in terms of integrals of

nonnegative functions.

(iv) Observe that, since y > 0, a function £ is defined
uw-a.e. on X 1iff it is defined u-a.¢. on X, and is A-measur-
able iff fy is A-measurable (if fy 4is A-measurable, the
equality f = % fy shows that £ is A-measurable). The proof of

(iv) can now be completed by using reasoning similar to that employed

in the proof of (iii).

{v) 1In passing, note that u 1is o-finite under the hypo-
theses given, since u(K) < = for each compact KC X, and X 1is

the union of a countable family of compact sets.

For any compact K C X, we have uv(x) = f EKx,b du < =,
X
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since v € Ll(X,A,u). This shows at once that by fulfills

requirement ([vI,35.i] and that uw is o-finite, since X is

o-compact.
We must show that, whenever A € A,
uw(A) = inf {uw(v)l V 1is open in X, A C V};

we know that this holds with u replacing u Suppose first that

v
A is compact. Let (ﬁn); be a sequence of open sets in X with

AC ﬁn for each n €N and 1lim u(ﬁn) = u(A). Since A is

n > <.

compact and X 1is a locally compact Hausdorff space, we know that

there exists an open set U0 C X such that A C U0 and Ua is

compact (cf., 2.g., Hewitt and Stromberg [20], Theorem (6.79)), so

that, replacing each ﬁn by ﬁn”Uo. if necessary, we may suppose
n -

N
j=1 Un

for each n €N, we obtain a sequence (Un)z of open sets in

that fl; is compact, for each n €N. Setting Un e

X such that ACU CU and U 1is compact, for each n € N;
n+l n n

since 0 < u(Un)—u(A) :_u(ﬁn)-u(A), n €N, it is clear that

u(Un)+ u(A). The fact that (Un); is decreasing, with u(Ul) < @,

gives u(fq Un) = lim u(Un). Thus, setting Ao = ﬁ; v,

n
n -+ oo
we have u(Ao) = u(A), and AC Ao. Consequently, EAO =z,
p-a.2. on X. For, =, == is non-zero only on the set A TA',
AO A 0

while u(AonA') = u(Ao)-u(AoﬁA) = u(Ao)-u(A) = 0. It is easy to

show that the sequence (EU ): is non-increasing, and converges
n

(3)




pointwise on X to EA . Thus, since ¢ > 0, (-2 w)m is non~
0 n

decreasing, non-positive, and converges pointwise to -z  y.

Further, f EU ¥ du < =, since U, is compact. Using B. Levi's
1 .

1
X
theorem (Hewitt and Stromberg [20], Theorem (12.22)) to justify the
second equality, we can then write

1lim uw(Un) = lim I EU v du
n-bm n-wa n

-f lim =y du
xn""" Un

= f z ¢ du
A
% 0
= J EAW du + J (EAO—EA)W du
X X
= J EAw du
X
= uw(A)-

This clearly suffices to prove that (3) is true in this case, in

which A € A, A" compact.

To prove (3) in the general case, first note that there exists
a collection {Fn}; of pairwise disjoint relatively compact sets

in A such that X = U: Fn: simply choose a family {?n}z

of compact subsets of X such that X = UI in (X 1is o-compact),

‘B cm B -1 ' - .
and set Fl : Fl’ F_: Fnﬁ(ug.l F,) for n=23,...; it is

n

3
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routine to show that {Fn}: possesses the requisite properties.
Now, choose A € A, Clearly, {AﬁFn}; is a collection of pairwise
éisjoint relatively compact sets in A, with a = U: (AﬁFn).

Let € > 0. By what was just proven, we can select, for each

n €N, an open set Uen C X such that AhFrl C Uen and

uw(Uen) < uw(AnFn)+(e/2n). Let Ue 1= UI Uen; Ue is open,

contains A, and we find that

”w(ue) =y (VU )

v 1 (3¢}
< % uw(Uen) ’
<] {uw(AﬂFn)i— EE}
1 2
= Uw(A)ﬂ’

since we know that u¢ is a measure on A. The desired equality (3)

is an immediate consequence of this reasoning.
Finally, let U be an open subset of X. We must show that

UW(U) = sup {UW(K)| K compact in X, K C u}. (4)

Once again, we already know that (4) holds with . replacing By

so we can find a sequence (Rn)- of compact subsets of X such

1
that in CU for each n, and 1lim u(ﬁn) = 4 (U). Setting
n-bﬁ
n v N
cm U :
Kn : ja1 Kj’ for each n €N, we find that Kn is compact,

K CK C U, and u(Kn)f u(U). Further, with U, := oK , we

n n+l 0 1 n




have u(Uo) = lim u(Kn) = y(U), and UO C U. Just as before,

n -+ e

Uo U

Now, clearly, (EK W)I is a nondecreasing sequence of nonnegative

it is shown that p=a.¢. on X, whence uw(UO) = UW(U)°

functions, converging pointwise on X to EU Y. Once again using
0

B. Levi's theorem (or Lebesgue's monotone convergence theorem, cf.,

Rudin [46]), 51.26) to justify the second equality,

lim uw(Kn) = lim J EK v du
n-—+ o n-+ o n

uw(Uo)

u (U);
w( )
the required equality (4) follows directly.

Thus, u is regular. a.

7
We should note that the regularity assertion of [VI.35.v]

appears as an exercise in Hewitt and Stromberg [20].

Still another method for constructing a measure, of which
we shall also make uyse presently, appears in Hewitt and Stromberg

[20) (cf., §(12.45)); we describe it next.

[VI.39] CONSTRUCTTION: THE IMAGE OF A

MEASURE SPACE UNDER A CONTINUOUS
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MAPPING. Let X and Y be locally compact Hausdorff

spaces, and ¢: X =+ Y a continuous surjection. Let L be a
measure on a oO-algebra Mu of subsets of X 1in the sense of

[Hewitt and Stromberg, §9]. Suppose that either (i) ¢-1(K) is
compact in X whenever K 1is compact in Y or (ii) (X'Mu’“)

is a finite measure space. Under either hypothesis, £fo¢ € Ll(X,MU,u)
for each f € CO(Y). For, if (i) should hold, fc¢ € CO(X), while
fog € Ll(X,Mu,u) if u(X) < », as in (ii), since £fo¢ is bounded

and continuous on X. Consequently, the map f v J fo¢ du is a
X
Radon measure on CO(Y), with which there is associated the measure
Wy oma o~algebra Mu of subsets of Y as in [Hewitt and
@
Stromberg, §9], such that I fo¢ du = J £ du
X Y
) is called the 4image ¢§ (X,M ,u)

€
o for each f CO(Y).

This measure space (Y ,M ,u
u¢ ¢

unden the continucus mappiitg 6.

[VI.40] PROPOSITION. Muntain the setting and nctation

04 [VI.39].

(<) Whenever B € Mu , XZhen ¢-1(8) € Mu' Thus,
¢
go0 on X 48 Mu-meabunabﬁe whenever g ot Y {8

M -measurable.
e

(L) For each o-finite B € Mu , Wwe have
¢

u, (B) = u(o~ ) -f 2g0¢ du.
X




(L] 1§ g€ Ll(Y,.iu ,u,), then go¢ € Ll(x’Mu”)'

¥

¢
and
J g du¢ = J god du.
Y X
PROOF. Cf., Hewitt and Stromberg [20], Theorem (12.46). a.

We shall return shortly, in [VI.42), 4ingra, to make further

observations concerning continuous images of measures.
The following technical facts shall be called upon later.

[VI.41] PROPOSITION. Let X bea focally compact
Hausdondg dpace. Suppcse (x,Mu,u) and (x,Mv,v) are measune
spaces with B(X) C Muﬂnv, and uw and v ate regulan. Supwcse

gurther that

J fdu = I £ dv, o each f e co(x) with f > 0.
X X

Then
{4) u(E) = v(E) gor each E € MunMv.

Now, 4n addition, assume that (X’Mu’“) and (x,Mv,v) are complete,
with Mu and My each pessessding the property of [VI.37.v], {.c.,
4§ EC X, then EE€ M“(Mv) L4 EK € Mu(Mv) §o1 cach ecempact

K € X. Then, also,

(4] Mu = Mv, sc the measute spaces (X'Mu’“) and

(1)
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(XM, ,v) are {dentical.

PROOF. (i) This is Theorem (12.41) of Hewitt and Stromberg [20].

Note that this statement implies [VI.37.vi].

(ii) We shall provide a proof of this statement along the
lines of the proof given for Theorem (12.42) of Hewitt and Stromberg
[20]. First, let E € Mu’ with u(E) < », Since y 1is regular,
there can be found, using [VI.36], an increasing sequence (Kn):
of compact sets, and, using [VI.35.ii], a decreasing sequence
(v )°° of open sets such that K CEC U_ for each n,

n’l n n
u(Kn) +u(E), and u(Un)+ ulE). Since u(E) < », we may suppose

that u(U;) < =. Set A :=U] K and B :=N] U. Then ABE

1 n 1l
B(X), ACECHB, and u(A) = 1lim u(Kn) = u(E) = lim u(Un) =
n-—+ o n -+«

v(B). Thus, u(BMA') = u(B)-u(B A) = u(B)-u(A) = 0. Since, by (i),
u=v on B(X), and BMA' € B(X), we have also v(B™A') = 0.

Now, write

2]
L]

(EN)U(ETA')

AV(ENA')

AV{EN{(A'""B)U(A'MB") }}

AU{EN(A'MB)}.

But (X,Mv‘») is complete, v(A'"B) = 0, and E~(A'"B) C A'"B,
whence it follows that E™A'"B) € Mv' Since A € Mv’ we conclude

that E € Mv'

Thus, whenever E € Mu and u(E) < », we have I € Hv.
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Switching the roles of u and v in the preceding argument shows

that, whenever E € Mv and v(E) < », there follows E € Mu'

Next, consider any E € Mu: if K is compact in X, then
EX € Mu and uw(EK) < = (since u is regular), so EX € Mv,
by the result already obtained. Since M\J has the property of
[VI.37.v], we must have E € Mv' Thus, Mu c Mv' Switching the
roles of u and v in this argument secures the reversed inclusion,

M cM., D.
v v

We next study the continuous image of a measure under a b

homeomorphism.

(VI.42] PROPOSITION. Llet x and Y be Locally cempact
Hausdorn§4§ spaces, and ¢: X =+ Y a homeomoaphism. Let (X’Mu’”)
be a measure space in the sense of [Hewitt and Stwemberg, §91, and

(Y,Mu ,u¢) its image under ¢: cf., [VI.39]. Then
¢
({) (XM ) 48 the image of (¥,M i) under o~
6
(éd) a subset B of Y 48 én N iff o~ 1(B) € ;
0

(i) a complex function g on Y 44 Mu -measurable

484 god on X 4 Mu-meaéunabze;

(<v] a function g {mere precisely, an equivalence class
ci functions whese membess ate palucise equal LA

. ; . Y
e YY) As 4n Ll(Y,Au ,u,) 486 gco € Ll(x,iu,p)

o

4t edlther case, we have
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f gdu¢-[ go¢ du.
Y X

PROOF. Obviously, is well.defined, for ¢ 1is a continuous

¢
surjection, and ¢-1(K) is compact in X whenever KCY is

compact.

(i) Since ¢ is a homeomorphism, it is clear that the image

() of u, under Q‘l is well-defined; writing v := (u) s
¢ -1 $ ¢’ -1
¢ ¢
we have the measure space (X,Hv,v) constructed from (Y,Mu ,u@)
_ ¢
and ¢ 1 as in [VI.39] (note that u¢ is a measure in the sense

of [Hewitt and Stromberg, §9), as is v). We have, by the manner in

which u¢ and v are constructed, J f du¢ - J foé¢ du for each
Y X
f € CO(Y), and J g dv = J go¢-1 du¢ for each g € CO(X). Now,
X Y
if g€ Cy(X), then goo™t € Col¥), so

I g dv = I go¢-1 du¢ = I go¢-10¢ du = I g du.
X Y X X

Consequently, in view of the properties listed in {vi.37], which

are possessed by 1 and v, all hypotheses of [VI.41] are fulfilled,

and we can assert that Mu = Mv, with u = v on Mu’ {.¢., that
b=V,

(i1) Let B C Y. From [VI.40.i], the inclusion B € Mu
-

implies the inclusion ®-1(B) € “u' Now, suppose ¢-l(B) € Mu'

Since M =M |, v := (4) , we can again apply [VI.40.i] (for
u v ¢ 0—1
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by and 6"}y to conclude that B = (o 1) (s 1)) € M |
6

(iii) Let U CXK be open. By (ii), g-l(U) GMu iff

(g0¢)-l(U) = ¢-1(g-l(U)) € Mu' Statement (iii) follows from this

observation.

(iv)  Applying [VI.40.iii], we can assert that, if g €

Ll(Y’Mu¢’u¢)’ then go¢ € Ll(x’Mu’“)’ with I g du¢ = J gos du.
Y X

Conversely, suppose g 1is defined u¢—a.e. on Y (whence it is easv

to see, from [VI.40.ii], that g¢¢ is defined yp-a.e. on X), with

go¢ € Ll(xaMu’U)- Then, by (i)’ go¢ € Ll(X’M\)’V)’ v = (u) -1’

$

. - ®
so we can apply [VI.40.1ii1] once again (for My and ¢ 1), finding
that g = go¢o¢-1 € Ll(Y,.‘.(u ,u¢), and J go¢ du = I goo dv =

¢ X X
-1
049 = . 0.

J goiod du¢ [ g du¢
Y Y k

[Vi.43] REMARKS. We recall here certain facts concerning
the measure space generated by restricting a measure to one of its
measurable sets. Let (X,A,u) be a measure space, and choose

i= oy Ag. It is easy

E€A. Set A := (A€ A| A CE}, then g

to show that AE is a o-algebra of subsets of E and that bg

is a measure on AE’ so there results the measure space (E,AE,uE).

Whenever f on X is A-measurable, then f| E is AE-measurable;

whenever J f du := I zf du is defined, then J (f] E) dug
E X E ;

is defined, and these integrals are equal. If (X,A,u) 1is complete,

then (E,AE,uE) is complete. The proofs of these statements are




routine.

Now, suppose that, in addition, X is a locally compact
Hausdorff space, B(X) € A, u 1is regular, and E is open in X.
Let x € E: then we can find an open neighborhood V of x such
that V is compact and V  CE (cf., e.g., Hewitt and Stromberg
(20], Theorem (6.78)), whence it follows that E is locally compact
in its relative topology (E 1is also Hausdorff, of course). Since
A contains E along with each open subset of X, AE contains each
open subset of E, so AE also contains B(E). It is a simple
matter to prove now that ) is regular; we omit the details. Next,
impose the additional hypotheses that E is o-compact and that A
possesses the property of [VI.37.v] (4{.e., if A C X, then
A€ A iff AX € A for each compact K C X): then AE inherits
this property. For, suppose that A CE. Let A€ AE’ and K be
compact in E. Then A€ A and K 1is compact in X, so AX € A,
whence A'K € AE' Conversely, suppose that ArK € AE whenever K
is compact in E. Writing E = UI Kn' where each Kn is compact
in X and contained in E, we have A = u‘; (AK ). Since K_

is compact in E, AﬁKn € AE for each n € N, which shows that

A€ AE. Thus, if A CE, then A€ AE iff AK€ AE for each X

compact in E.

As an example, suppose n €N, X =R", A= MA , and u =
n

A, Let E CR™ be open. Recalling (cf., the remark in [VI.37])

that An is a measure in the sense of [Hewitt and Stromberg, §9],




and since any open subset of R" is o-compact, we see that each of

the conditions imposed above is in fact fulfilled by these particular
choices, so we can make the corresponding assertions concerning the

measure space (E’(MA )E,(kn)E). In this instance, we shall usually
n

denote () )

o E again by An; no confusion should result from this

practice.
Let us cite the following familiar result:

(VI.44] PROPOSITION. Let @ be an open subset of R",
and g: © +R" a g-regulatr transfommation, for some q € N.

Suppcese £ € co(g(Q)). Then

fdr = [ fog-|Jg| da_.
g(Q) Q

PROOF. cf., e¢.g., Fleming [15], Theorem 5.8. a.

0f course, the transformation formula of [VI.44] is true under
much less stringent hypotheses on the integrand. The more general
statement is obtained as a particular case of a result to be proven

later (cf., Theorem ([VI.52] and the remark following).

We wish to describe next the manner in which Lebesgue measure
on R" (n > 2) induces a measure on a o-algebra of subsets of
an (r,n;q)-manifold, called the Lebesgue measure on the manifold.
Essentially, the idea is to first construct the measure for any

coordinate patch and show that the measures on overlapping patches
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agree on their intersection. These local measures are then used to
construct a measure on the manifold, which, as it turns out,
coincides on each coordinate patch with the original measure on that

patch.
The following simple observations must be made.

[VI.45] LEMMA. Llet M be an (r,n;q)-manifold. Then, with
thein nespective nefative topcelogies <inherited §rom R®, M and
each coendinate patch ¢cn M are Lecally compact o-compact

Hausdcr§§ Apaces.

PROOF. Let U be a coordinate patch on M; choose any
coordinate function h for U. Then h: U - h(U) 1s.a homeo-
morphism, where, of course h(U) has its relative topology as a sub~
set of R°. Then h(U) 1is locally compact and Hausdorff, since

h(U) 1is an open subset of the locally compact Hausdorff space R'.
Any open subset of R is o-compact as a subset, hence also as a
subspace, since it is clear that any subset of a topological sub-
space is compact in the subspace iff it is compact in the containing
space. The existence of the homeomorphism h then shows that U is
locally compact, o-compact, and, of course, Hausdorff. Note that the
topology which U inherits from the subspace M coincides with that

which it inherits from the space Rr".

Now, suppose x € M. Then x 1s in some coordinate patch

U on M. We have just seen that there is an open U-neighborhood




V of x such that V.U is compact in U. From the last remark

in the preceding paragraph, V"U is also compact in M. M is
obviously Hausdorff, so V.U is closed in M. From this, and the
equality V-u = V-MWM, it is easy to see that V-M = V-U. Observing
that V {s also an open M-neighborhood of x, since U 1is open

in M, we conclude finally that x possesses an open neighborhood in
M with compact closure in M (in passing, note that we can easily

U

show also that vl s compact in R®, with V = = V7). Thus,

M is locally compact and, of course, Hausdorff.

To see that M 1s o-compact, first choose a covering

collection {UI}\EI of coordinate patches on M, then a correspond-

ing collection {fll}IEI of open sets in R" such that U = ﬁ1PM for

each 1 € I (each U, is open in M). Clearly, {61}161 is an

open cover for M in lga whence the Lindeldf covering theorem shows

that there exists a countable set IO C 1 such that {ﬁ1}1EI also
0

covers M. Thus, {01} is a covering of M by a countable

1510
collection of coordinate patches. Each U1 is o-compact as a
subspace, hence also as a subset of M; we conclude that M is

o-compact. a.

[Vi.46] CONSTRUCTTION: MEASURE SPACE

B G Oy gy,

). Let M be an (r,n;q)-manifold, and (U,h)
a coordinate system in M. Then h(U) 1is open in 'mf. and Jh-1
is continuous, hence Ar-measurable and Ar-locally integrable,

as well as positive, on h(U). All hypotheses of Proposition [VI.38]
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are clearly satisfied in this setting, so we obtain the measure
A, = (X)) on (M,) given by
h. r In 1 Ar h(U)

Ah(E) r= [ Jh-l dAr, for each EE€ (M ) (1)

AR ”
£ r

Proposition [VI.38] also provides a number of properties of the

measure space (h(U)’(MXr)h(U)’xh): it is complete, regular, and

o-finite, while, if f 1is a complex function defined lr-a.e. on
h(U), then (the equivalence class containing) f €

Ll(h(U),(M ) ) 4iff (the equivalence class containing)

A
k4
Ar h(U)’"h

’ -1
fJn - € Ll(h(u)’(MXr)

h(u),xr), and in either case, we have

~1
J f dkh = [ f+Jh dAr. (2)

h(U) h(U)

Let us show that Ah is a measure in the sense of [Hewitt and

Stromberg, §9}: the map £+ J f-Jh-1 dkr is clearly a Radon
h(U)

measure on Co(h(U)); let MA' denote the o-algebra of subsets of
h

h(U), and lﬁ the measure on Mx. associated with this Radon
h

measure as in [VI.37]. Then

’ = . —1 =
AN J £Jn70 dx f £ d)

h(V) h(U) h(U)

for each f € Co(h(U)).

Thus, it is clear that (h(U),HAﬂ,AQ) and (h(U),(Mkr)h(U),xh)
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~

Th(w)

fulfill all requirements of [VI.4l] (note that (M ,
r f

A
possesses the property of ([VI.37.vl; cf., [VI.43]), and we con-

clude that these measure spaces are identical. |

[VI.47)] CONSTRUCTION: MEASURE SPACE

‘. (U,MA ,XU). Let M be an (r,n;q)-manifold, and U a coordinate P
U

patch on M; 1let h be a coordinate funetion for U. Then we have

the homeomorphism h-ls h(U) = U between locally compact o¢-compact

Hausdorff spaces, and the measure space (h(U),(MAr)h(U),xh); we

showed that the latter is generated by-a Radon measure on Co(h(U)),

as in [Hewitt and Stromberg, §9}. Consequently, we can specialize

and 42]., We define the measure space (U,M)‘ ,xu) to ke the image
U

0§ the measure space (h(U)'(Mk )
r

h(U)’Ah) under the mapiring

h-l. Note that (U,MA ,AU) is a measure in the sense of [Hewitt
U

and Stromberg, §9], generated by the Radon measure f\»

1l .. -1

I fon™" @\ = [ fon™ 2 Jn
h(w) h(u)
list of the properties of this measure space; if the origin of a t

to this setting the general construction and results of [VI.39, 40, ’
b
dkr on CO(U). We provide a 1

particular property is sufficiently clear, we shall state it without

further comment.

(1) (U,Mx ,AU) is a complete measure space.
4]

(i1) B(U)CMA , and A
U

U is regular.

(1i4) AU is o-finite. ([For, U 1is o-compact, and XU
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is regular, from which the o-finiteness of AU follows.] Do

: (iv) 1f ACU, then A€M iff AK &M, for each :
? U U
compact K C U.
(v) If uy 1is any regular measure on MA such that
U
fdyu= f dA for each f € C.(U), then u = A .. C A
4] 0 - U ‘
U i -
(vi) If h 1is any coordinate function for U, then the ' j

image (U’MX 5
U

ﬁ-l coincides with (U,&A oA
U U

the coordinate patch U, 4.e., is independent of the particular

U

h M)~ - ,
) of the measure space (h(U),(fAr)h(U),Ah) under 1

). Thus, the latter is intrinsic to

coordinate function used to construct it. We are then justified in
calling Mx the o-algebra of Lebcsgue-measurable subsets ¢f u,
U

and ), Lebeasgue measure on U. [To see that the first statement

1s correct, we need only show that J £ dy = I f diU, whenever
U U
f € CO(U). For then, in view of (i), (ii), and (iv), supra (which

remain true when M: and A, replace M and )\ respectively),
AU U AU U

and the fact that U 1is a locally compact Hausdorff space, we

,A,.) and
AU U

) are, in fact, identical. Consider, then, the gq-regular

shall be able to apply [VI.41] to deduce that (U,M

(uv"iiui A
transformation ¢ := hoh l: h(U) »RY, with ¢(h(U)) = R(U),

U

cf., [VI.21]. Clearly, ¢-1 is q-regular from h(U) onto h(U),

1 1 -1

while h™ = h""0¢ -, on h(U). Applying Proposition [VI.13]
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yields
I = (O hos ™ 367Y,  on R(U). (1)
Now, choose f € CO(U). By the manner in which Ay XU’ Ay
and AE were constructed, we know that [ f dAU = [ fol'x_1 dAh =
J
U h(U)
[ tonlmlar, and [ £ai - foh ™! i =
, r’ U 4
h(U) U h(U)

foﬁ’l.Jﬁ‘l dxr' Thus, using [VI.44] to obtain the second

h(V)
equality, and (1) to obtain the third, we can write

goh~L.ogp1 ar_

I £y
U h(U)

- {foh™2os 1} {(In"Yyoo ™1}
¢{h(U)}

307 ar_

- f foh L. 7571 dr_
1))

£ dAU.

[}
Q——— o>

As noted, the first statement of (vi) is hereby proven; the remain-

ing statements are self-explanatory.]

(vii) (h(U),(M )h(U)’Xr) is the image of (UM, ,3,)

r U
under h. ([This s just (VI.42.i], re-phrased for the present

A

context. ]

(viii) A subset AC U is in M iff h(A) € (M, )

A A

U ¢’
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4{.e., iff h(A) 1is a Lebesgue-measurable subset of R". Whenever

A€ MA » 1its Lebesgue measure is given by
U

(2)

XU(A) = }h(h(A))
- -1
= _th dkh
h(U) 0
- -1
= J *h(a) Jh dxr
h(U)
= L ax
h(A)
[The first statement is [VI.42.ii]. For the second, we refer to
{V1.40.1ii] (noting that every set in Mx is XU-c-finite),
U
= -1 s =
(VI.46.1), and the obvious equality _th *ha) ©°0 h(U).]
(ix) A complex function f on U is M\ -measurable
U
iff fch”l on h(U) is (MA )h(u)-measurable. [CE., [VI.42.4iii].]
r
-1
(x) f € Ll(U’MXU’AU) iff foh ~ € Ll(h(U),(MAr)h(U),lh)
-1, -1
iff foh “+Jn ~ € Ll(h(U),(MAr)h(U),Xr). if any of these
inclusions should obtain, then
[ £fdr = j foh™! dr_ = fon bl . (3
U h T

u h(U) h(U)

[Combine [VI.42.iv] and the property of A, described by (VI.46.2).]

Apropos of (x), note that whenever f 1is an Mx -measurable
U
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h(U)-measurable),

function on U (which holds iff foh™d is (4, )
r

and f is non-negative, then equality (3) must hold. For, 1if one

integral is finite, then all three must be finite, and equality must

hold, by (x); if one integral is infinite, then all must be infinite

(by (x)), and the equality again holds.

(xi) Let U0

U0 Cu (L.e., Uo is any coordinate patch contained in U). Then

ue any non-void open subset of M, with ‘

MA = (M)‘ )

U (:= {A €M, | AC LR (4)
Yo

U 0 U

and

A, = (A) CG=a.] M) ) (5)
Uo U Uo u AU U0
recall the notations and remarks of ([VI.43]. Thus, if ﬁ is any
coordinate patch on M such that UrU # ¢, then (noting that
N0 is a coordinate patch)
(MAU)Uﬂﬁ = MA =W )UWﬁ’ (6)

Vail s

and o |

OPwi = Ao ™ o vope "

{.2., "the Lebesgue measures on overlapping coordinate patches agree i
on their intersection." [The second assertion is clearly an
immediate consequence of the first. To prove the latter, we wish to

use [VI.41]. 1In view of property (vi), any coordinate function for
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UO can be used to construct XU ;3 let us use h[ UO. Then, for
0

any f € CO(UO), we can regard f as in CO(U), and write

-1 -1
f £ dAUO = f fo(h| Uy) «J{(h] Uy hax
Uy (h| Uy) (Uy)
- I gon~Lt.gnt dx_
h(Uo)
- - -10 _1
= J -h(UO) foh Jh d).r
h(W)
= J = oh-l'foh-l-Jh-l d)
Uo r
h(V)
\ U
b 0
= I £ d(xU)U .
b 0
0

In order to assert that (Uo, MA s A
U
0

are identical, vdia [VI.41]), we now need verify only that these

) and (UO’(MA )U ,(xU)U )

Ug v Y 0

spaces are complete, that S(UO) c MA “(Mx )U , that XU and
0 U -a 0

A e
(AU)U are regular, and that JA and (“A )U possess the

0 Ug Uu-o

propert> of [VI.37.v]. The requisite facts concerning MA
U
0

and AU are contained in (i), (ii1), and (iv), 4upta; those
0
concerning (M are implications of (i), (ii),

and (),.)
Uy,

)
Mo Yo

U
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(iv), the reasoning in (VI.43], the fact that UO is open in U,

and the o-compactness of U, (cf., [VI.45]). Thus, (4) and (5)

0

are correct. We point out that (M, ) and (X)) are well-
u Y% U,

defined, since U0 is open in U, as well as in M, so that

Uy € B(U) C MAU.]

In passing, we note that there is no inconsistency problem
in the case of an (n,n;q)-manifold M, on which we already have
the Lebesgue measure (Xn)M. For, in this case, the single

coordinate system (M,iM), where 1 is the identity on M, serves

M

A ,XM), and from (viii) it is
M
immediately evident that MA = (Mk )M and AM = (An)M, since

M n

for the construction of (M,M

-1 -1
JiM JiM 1 on M.

Property [VI.47.xi] leads one to suspect that there exists
a measure on the whole of an (r,n;q)-manifold, the restriction of
which to any coordinate patch coincides there with the Lebesgue
measure for the coordinate patch. We shall presently show that this
is indeed the case. The construction of this measure is most
easily accomplished via the device of a partition of unity for a
manifold (cf., Fleming [15]), so we prepare certain facts in this

direction.

[vi.48] DEFINITION. Let M be an (r,n;q)-manifold,

p ENJ=}, and {U }

Jier @ covering collection of coordinate

patches in M. A family of functions {"1}161 is a Locally ginite
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p-rettition of wiuity gon M, subcrdinate 2o the cover {U1} iff

1€1

(1) for each 1 € I, n € Py, m 20, and there
exists Y, € I such that supp T is compact and

contained in UY »
1

(ii) whenever K C M 1is compact, there exists an open
neighborhood W of K in M and a finite set

iw C I such that nl(x) = 0 for each 1 € iﬁi&

and x € W,
and
(114) ] 7 (x) =1, for each x € M. .
€L

The existence of such partitions of unity is easy to prove,
from the familiar fact that there exists a smooth locally finite

partition of unity subordinate to an open cover of a subset of R":

[VI.49] L EMMA. Llet T be a family of open scts in R";
write Q = U T, Then there exdists a (countable) collection

v} {a1 € Co(®) Such that

(£) v, 20 gdor each 1iE€N,

(<L)  supp vy 48 centadned {n seme member ¢f T, e

each 1 €N,

(<l ] e, (x) =1, for each x € g,
ge1 1

and
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(dvl  whenever K C Q 48 compact, thetre ex<ists an m €N
and an open set W, with KC WCgq, asuch that

wi(x) =0 whenever {>m and x € W.
PROOF. This is Theorem 6.20 of Rudin [47]. o.

[VI.50] PROPOSITION. Let M bean (r,n;q)-manijold
and {Ue @ coverning collection 0§ coordinate patches on M.
Then thete exdists a countable family {r 1}2-1 forming a Locally
ginite gq-partition of wty for M, subordinate to the cover

v} er-

PROOF. For any 1 € I, U1 is open in M, while M 1is a

locally compact Hausdorff space ([VI.45)), so we can find, for each

x € Uz’ an M-open neighborhood le of x such that U:i c U1

and U:z is M-compact (cf., Hewitt and Stromberg [20), Theorem
(6.78)). Since the topology on M is that inherited from ‘m“, it

is clear that U:z is compact, hence also closed, in R". From

this, and the equality ey ™, it follows that ™May .
1% 1x 1% 1%

The resulting collection {Uxx[ 1E€I, x€ Ul} is then an M-open
cover of M. For each 1 € I and x € Ul, select an open set

U CR"™ forwhich U =0 M. Set I :={f | 1€1, x€U }:
11X 11X 11X X 1

' 1s a covering of M by open subsets of R". Let {wi}i-l C

C;(U I') be as in [VI.49], and define LI wil M, for each

1 €EN: we claim that (=}, fulfills all requirements of [VI.48].

i i=1
a -]
First, =, > 0, and Z n,(x) = Z v,(x) =1 for each x € M,
i= g=1 % g=1 1
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from [VI.49.i]) and [VI.49.1iii], respectively. Next, suppose K
is compact in M. Then KCUT and is compact in 'Rn, so, by
(VI.49.iv], there are an open set W CR" such that KCWCUT

and an m€ N such that wi(x) =0 for i >m and x € W. Set
W= WM W is an open neighborhood of K in M, and ni(x) =
wi(x) =0 for i>m and x € W. Now, choose i € N: we must show
that supp T is compact and contained in some Ul (L €1).

According to [VI.49.ii], supp wi Cc ﬁl for some 1, € I,

1*1 i

x. € U . Thus,
i 1y

supp m; = {x € M| 7 (x) # 0}
= {x€M y (x)# 0} ™M C supp v,"MC U ~M
i i 1,X
i1
=u C U: £ CU .
'3%y 1% 1

At once, we see that supp L c Ul , and supp T is compact in M,
i

since supp L is closed in M and contained in the compact

subset U: x (then supp LA is also compact in RrY). Finally,
i1

we verify that L € Cq(M): let (U,h) be any coordinate system

fn M. Since h t € CIh(WR™), with h l1(h(V)) =UC MCU -

’

and wi € C;(U r), 41t is obvious that WiOh-l € Cq(h(U)). But

-1

n Oh-l - wioh.1 on h(U), so wioh € Cq(h(U)). It follows

i
that n € ¢l . 0.

We can now produce the Lebesgue measure on a manifold.

[vi.51] CONSTRUCTTION: MEASURE SPACE




(M’MA ,XM). As usual, let M be an (r,n;q)-manifold. We define
M

a Radon measure on CO(M): select a covering collection

{ i =
‘(Ux’h1)}\61 of coordinate systems in M, and let {ni}i_1 be

a (countable) locally finite q-partition of unity for M,
subordinate to the covering {U1}1€I' For each 1 € N, select

1(1) € I such that supp 7, C U1 Now, suppose f € CO(M).

i (L)°

For each 1 €N, nif is continuous and has compact support in
s A

1(1)

U , so (n,f)| v € L, (U oM ), with
1(1) i (1) 1Y (4) AU Ux(i)

-1 -1 X
[ ("if)Oh\(i).Jhl(i) dAr. (1)

n £ dA
f 1 Ut(i) h

Vi) @)Yy

In fact, in view of the compactness of supp f, and [VI.48.ii],

there exists an m_ € N for which ﬂif = 0 whenever 1i > m,.

f f

Consequently, setting

T -1 ..-1
= 121 J (nif)oh‘(i)--h‘(i) dr_, (2)

By Wegy?

we see that the sum is actually finite. This process clearly defines

a non-negative linear functional A, on CO(M). Let us convince

M

ourselves that AM is "intrinsic" to M, 4{.e., that it does not

depend upon the particular auxiliary objects chosen for its

construction. Let (V. } be a covering collection of coordinate

Yy v&J

patches in M, (I }’ a locally finite gq-partition of unity for

i'i=1
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M, subordinate to {Vy} and select, for each i €N, ~v(i) € J

yeJ’

C o=
such that supp oy VY(i)' Define A on CO(M) by Af
[
) J L E dr for each £ € C,(M); as before, the sum
i=1 : y({1)

v

y(1)
is finite, and A is a Radon measure (note that the selection of
coordinate functions for the patches is in no way essential to the

construction). Let £ € CO(M). For each 1 €N,

A/

f mf dx = f 1 monf da
=t 3 7 Ty

i v
y(d) v

Yy (1) ¥ (1)

= Zl f njﬂif dkv

] y(i)
Ve ()

(supp T, is compact in M, so njni-o on M for all j >

some m_E€ N, and the sum is finite); since supp "j C U1(j)

f

for each j €N, and in view of [VI.47.xi], we can write further

n,f di - 3 J 7 0 f d)
v | o RICONE L U v
v(1) v(1) ()
-Z ‘( m. 1.f d) .
E Y I OOt e
y(1) (3

Finally, we arrive at the equality

Y IET ) f LI O

v(1)

st
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= 3 ) J n. T, f da (3)

i=1 j=1 it vY(i)mUl(j).
Ve ™

-]

Retracing the reasoning with the roles of { }?-l and {ni}isl’

i“i
{ } and { } reversed, and keeping in mind the

Vi) 1=1 Vyary 1=

finiteness of the sums, we come to the same expression for AMf L

as that displayed in (3) for Af. Thus, L= AM.

LA, o be that asscciated
MM
with the Raden measute /\M i the sense ¢f (Hewdtt and Strembets,

We degine the measure space (MM

§9]; M)‘ 45 the o-algebra of Lebesgue-measutrable subsets of M,
M

and Ay 48 the Lebesgue measutre on M. Clearly, by what was just

proven, AM is intrinsic to M, 4.e., it does not depend on the
particular auxiliarv objects {covering coordinate patches,

partition of unity) chosen for its explicit comstruction. Perhaps
we should point out that it is legitimate to invoke the construction

outlined in ([VI.37], since M 1is locally compact and Hausdorff

([VI.45)).

We proceed to a listing of the more immediate properties of

A throughout, {(U\’hm)}tel’ {ﬂi}i-l' and {1(1)}1_l retain

M;

their meanings as set down already.

(1) [ £y, = Af = ) [ mf Ay

=1 1 (1)
M vt(i)
w (&)
-1 -1 s
) 121 I (nif)Oh\(i)‘Jht(i) dAr’
Ry Yny?
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for f € CO(M).

(i1) MM, ,x)) 1is complete.

AM M

(iii) B(M) C MX , and AM is regular.
M

(iv) If ACM, then A€ MA iff AK€ M for each

M *u

compact K C M.

(v) AM is o-finite. [For, M 1is o-compact, and

M
is regular.]
(vi) Let U be any coordinate patch on M. Then
(Ve B c M )
A
M
M, = (M) , (3)
AU XM U
and
AU = (XM)U (6)

(recall the notations established in [VI.43]). [To see that this is

so, first let f € CO(M), with supp £ C U. Then

f f d()\M)U = f f dAM

U U
-f £ ),
M
= 3 n, £ d)
i=1 J YoV

!
:
i




S G

v
i=1 b 1(1)
U )
= Z f n, £ dx
N
=1, 0 b hw™
1(1)

) f m £ A
U

i=1

Y on.fdx
121 10U

U
- f £ di,
U

having made use of [VI.47.xi], the vanishing of all but a finite

number of the T, on supp f, and the fact that supp 7, C U1

i (i)
for each 1 €EN. Using [VI.47.4, ii, and iv], (i), (iii), (iv),

and [VI.43], recalling that U 4is open and o-compact in M, it

follows that all hypotheses of [VI.41l] are fulfilled by (U’MA ,AU)
U
and (U,(MA )U,(AM)U). These measure spaces are therefore identical.]
) M

(vii) Let (U,h) be any coordinate system in M. A subset

ACU is in Mx iff h(A) is a Lebesgue-measurable subset of
M
Rr, in which case we have

-1 -
AM(A) = AU(A) = Ah(h(A)) = f Jh dlr. (7)

h(a)

[Simply combine (vi) and [VI.47.viii].]

(viii) Let (U,h) be any coordinate system in M. A
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complek-valued function f on U is (MA )U-measurable iff fch-1

M

)h(u)-measurable; if f is (MAM)U—measurable

on h(U) is (MA
4

and non-negative, then

-1 -1 -1
[ £dr, = J £d(h), = f foh™" dA_ = I foh™ - InTT da (8)
U U h(U) h(v)
1l e :

Moreover, f € Ll(U,(MAM)U,(XM)U) iff foh

Ll(h(U),(M in either case, equality (8) holds. [Combine

At)h(u),kr);

(vi) with [VI.47.ix, x] and the remark following [VI.47.x].]

(ix) Let £ be a complex-valued function on M. Then f Y

is M, -measurable iff f| U is (M, ) -measurable for each
AM XM U

coordinate patch U on M, which holds, in turn, iff (f| U)oh'1 i
is (MA )h(u)-measurable for each coordinate system (U,h) in M.
T
To show that £ is MA -peasurable, it suffices to show that
M
(fl U )Oh.1 is (M, ) ~measurable for each 1 €1 ({.e., it
1 1 kr hl(U‘)
suffices to consider any fixed covering collectiun {(01‘h1)}151 i

of coordinate systems in M).

[Let £ be MA -measurable. Choose any coordinate patch U on M.

M
1f V is open in K, then (f] U (V) = uneTl(V) €M, and Cu. |
M
|
Thus, f| U 1is MA )U-measurable. Now, suppose that f! U is ;
{ M !
(M, ) -measurable for each coordinate patch U on M; in particular, ‘f

AM U

this is true for each Ul, t € I. We can extract from the cover
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{Ul}tél a subcover {01}1610’

the proof of [VI.45]). Let V.-CX be open. Then Ulhf‘l(v) =

where I0 C 1 1is countable (cf.,

(£] UI)-l(V) € (MA ). € MA for each 1€ 1 so also f-l(V) =

M UI M 0
v c {u hf-l(V)} €M, , since M is a o-algebra. Thus, f is
€1 1 A A
0 M M
MA -measurable. By (viii), £| U 4is (M, ) -measurable iff
AL U
M M
(fl U)Oh-l is (MA )h(U)-measurable, where (U,h) 1is any coordinate
T

system in M. These facts show that the first statement of (ix) is
correct. The second statement is a corollary of the reasoning just

completed.]

(x) Let f be a non-negative MA ~measurable function on
M
M. Then
J £, = 121 I m £ dy
M M
) [ mEdy, (9)
i=1 U
1(1)
< -1 -1
.{ f (nif)ohl(i) Jhl(i) dx_.
i=1 h (v )
1(1) " (1)

[A well-known theorem of Lebesgue (Hewitt and Stromberg [20],

Theorem (12.21)) permits us to write [ [ 2 g ] dr, =
g1 1 M

121 I -5 dAM for any sequence (81)1-1 of non-negative MXM_
M

measurable functions on M; the sequence ("if):-l fulfills these
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requirements. Using this in conjunction with (viii) and (ix), we
obtain
f £ dr, = J (izl ﬂif] diy
M M
tizl J ﬂif d)\M
M
) f mE Ay,
i=1 v
1{1i)
v 1 1
- z (ﬂif)ohl(i)-Jhl(i) dxr. ]
=y W)
(1) ()
(x{) Let f be a complex MX -measurable function on (or
M
defined AM-a.e. on) M. Then f € Ll(M’MlM’xM) iff
L[ e ey <. (109
i=]1 U
1(1)
L.e. (by (%)), iff
< -1 -1
121 (ni[f[)oh‘(i) Jhl(i) dr < =, (11)
h (U )
(D))
in which case we have
L]
j £y, = ] f mf A
M i=l
1(1) (12)
T -1 -1
- 7 (m o "y Th ) A
=l oy WL
1(4) 71 (4)

i e s are———e it
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[We may suppose that f is defined on M. Since f is M) -
M

Y, 4L.e.,

measurable, f € L (MM ,1) {1ff |£] € Ll(M,MAM,XM

AM M
iff [ |£] dAM < w, The latter obtains, in view of (x), iff (10)
M

or, equivalently, (11) should hold. If f € LI(M’MA DY
M

equalities in (12) follow from the definition of the integral of a

M)’ the

complex function in terms of integrals of non-negative functions,

and the fact that (12) holds for a non-negative integrand, by (9).]

For our purposes, the following 'transformation of integrals" t
result proves to be quite a useful by-product of the develop- 1

ment of the Lebesgue measure on a manifold. f

[VI.52] THEOREM., Llet M bean (r,n;q)-manifold. Let
m €N, and suppose that g: M +R" 44 a q-imbedding; the
assentions cf Theonem [VI.30] hold, s0 that, in particular, g(M)

i an  (r,m;q)-manifeld.

({) A subset EC g() 4s in M, s sl en .
g(M) M
1§ E€M , then
g(M)
xg(“)(z) = j EEOg'Jg dxM = f Jg dxM. 1)
" g (E)
(L) A complex functicon £ on g(M) 45 M -measu-able

Az(M)

{85 fog 48 Mx -measurable.
M

(<id) A complex function £ degdined 2 -a.e. cn g(M)

g(M)
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8 in Lo(g(M) M » A )y 444§ fcg-Jg €
1 XS(M) g(M)

Ll(M’Mx Ay 4 elthern inclusion should held, then
M

J f dxg(M) - ( fog-Jg ddy- (2)
g (M) M

(4v) 1§ £ 48 non-negative and M -measurable on »

‘e (m) |

g
g(M), then equality (2) holds.

PROOTF. Since M 1is a locally compact o-compact Hausdorff i

space, (r { ,\,.) is complete, B(M) C M, , ), is regular, |
A M A M |
M M t
|
t

Jg >0, and Jg € Lloc(M,fA ,AM) (Jg is continuous; cf., [VI.25]),

M

we can construct the complete measure space (M,M. ,(A.)); ) as in
Ay M Jg

Proposition [VI.38], where (AM)JS(A) :f [ Jg dAM, for each
A

A€ MAM. (AM)Jg is regular and o-finite. In fact, (M,MAM,(AM)Jg)

is the measure space associated with the Radon measure £+ .

1

f fig dAM on CO(M) as in {[VI.37]: this follows from [VI.4l1],
M

once we take into account the properties just cited, those of [VI.37],

|

. K

[vi.51.4v], and the equality J f cl()«M)Jg f flg dAM for £ € ‘
M M

CO(M) ([v1.38.111]).

Now, it is a simple matter to check that the prerequisites

of the construction effected in [VI.39] are met by M,
M

and g: M - g(M). Thus, the image (g(M),M((XM)Jg)g,((xM)Jg)g)

M)Jg)
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of (M,Mx » (A )J ) under g 1is defined; for brevity, let us write
y M-

28

M =} VLS ((AM)Jg)g. This image is a measure

A8 ((XM)

) and
VI Jg’s

space in the sense of [Hewitt and Stromberg, §9], viz., that generated

by the Radon measure f \+ f fog d()‘M)Jg = f foglg dXM on Co(g(M)),
M M

and so possesses the properties of [VI.37]. The conclusions of
both [VI.40] and [(VI.42] can be applied in the present setting, the
mapping g: M ~ g(M) being a homeomorphism, since g: M -R" is

a g-imbedding ([VI.23.iv.l]).

We claim that the measure spaces (g(M),MA and

g(M)
(g(M) M ,Ag) coincide. Let us suppose for the moment that this
g’ M
M

has been proven, and check that all conclusions of the theorem follow

e

thereby:

(1) By (VI.42.411], a subset E C g(M) is in M g iff
A
M

g-l(E) € MA . Since M = MA , the first part of (1) follows.

g
M AM g(M)

2% and 2 is o-finite, (VI.40.ii] gives,

Since Ag(M) = M g (M)

whenever E € M = M , using the definition of (1), ,
*g(m) 28 ' Jg

= 28(E) = -1 -
Aoy B) = Ay(E) = ()5 (77 (E)) J Jg dx,.
-1

g (E)

Thus, (i) i{s correct.

—— -

[ R NI SR




(ii) From the equality M = Mx , (i1) 1is an

Ag g(M)

immediate consequence of [VI.42.1iii].

(iii) From ([V1.42.iv], a complex function £, defined

Ag-a.e., {L.e., X -a.e., on g(M, is in Ll(g(M),M

g «
g(M) i XM)

g
AM

L, (g0, M, but [VI.38.iv]
g™

says that the latter inclusion is valid iff fog-Jg € Ll(M,M

,Ag(m) iff fog € Ll(M,M)‘M,(AM)Jg),

L) .
My M

If any one of these inclusions should hold, (VI.42.1) and

(VI.38.iv] give

= g = = .
I £ a f £ arg f fog d0y) g, f fog-Jg di,,
g™ g(M) M M

which is just (2). This completes the proof of (iii).

(iv)} Statement (iv) is a simple consequence of (iii). For,

let f be non-negative and MA -measurable on g(M). 1If one
g(M)

of the integrals appearing in (2) is finite, then both must be
finite, and (2) holds, by (iii). On the other hand, if one of the
integrals in (2) is infinite, both must be infinite, so (2) holds,

again by (iii). Note here that fog-Jg is MA -measurable, by
) M

(11) and the continuity of Jg.

Thus, the proof of the theorem is reduced to verifying that

- g
(g(M),MA ’Ag(M)) (g(M) M g’AM)’ for which we shall appeal,

gM) M

as usual, to [VI.4l]. A quick check of the properties of these two

|
1




measure spaces (cf., [VI.37.ii-v]) shows that it is enough to prove

that f £ dx
g(M)

considering the hypotheses of ([VI.4l].

by the manner in which )

structed, that

g(M)

g(M)

g

[ f dxﬁ, for each f € Co(g(M)),

We already know, however,

M T ((XM)Jg)g and (xM)Jg are con-

8 = = .
J £ dAM f fog d(XM)Jg f fog.Jg dxM

g(M)

whenever f € Co(g(M)). Therefore, we wish to demonstrate that

I f dxg(M) = [ fog-Jg dlM, for each f € Co(g(M)).

g™

Suppose, first, that f € Co(g(M)) with supp £ € U, where U 1is
any coordinate patch on g(M). Choose a coordinate function h for

U. If we set U := g-l(U) and h := ho(g| U), then U 1is open in

M, h(U) = h(U) is
of U onto ﬂ(ﬁ).

is a q-imbedding (

Cq(ﬁ(ﬁ)ﬂR“) and rank Dﬁ-l(x) = r for each x € h(U). Thus,

(U,h) is a coordina

Recalling (VI.24.3),

{(Jgyon 117571 «

M

M

open in :m’, and h is clearly a homeomorphism

Since ﬁ-l = g-]'oh-l

[vI.30.14i]), it follows that

te system in M. Note that

we have

and g-l:

|(gcﬂ-1),lA...A(gcﬁ-1),

M

r

—-1 -1
lh,l/\.. ./\h,rl

= I(goﬂ-l), A...A(goh”

- J(goh™Y) = s}

)

)s !

g - R"

ﬁ'l

€

1. gon™h

--1
h7]A- . .ARj




on h(U) = h(U). Then, using [VI.51.vi] and (VI.47.3) gives,

since supp fug C g-l(U) =1,

f fog-Jg diy, = f fog-Jg diy

M U
= J fogolrx-l-(.Tg)oﬁ“l'Jf\-l dkr
h(0)
. f fon ™l Tt an .
h(U)

But also, again from {VI.51.vi] and (VI.47.3),

1 1

J £ dxg(M) = [ f dku = [ foh “+Jh dkr.

g(tn) U h(U)

This establishes (3) for the case in which supp £ is contained in

a coordinate patch on M.

Now, considering the general case, let f € Co(g(M)). Let

{t } e

{ﬂi}:-l a locally finite gq-partition of unity subordinate to

{UI}IEI’ and, for each i1 €N, choose 1(i) € I such that

be a covering collection of coordinate patches on g(M),

- |
C =
supp T, Ut(i)' For each 1 € I, set U =g (UI), and for each

1€N, set m, :=mcg. Then it is easy to check that {U1}1€I

is a covering collection of coordinate patches on M, {ﬁi}:_1

is a locally finite gq-partition of unity for M, subordinate to
U 7 CO €
{U1}1€I’ and supp m U\(i) for each 1 € N. For example, to

see that € Cq(M), let (V,k) be any coordinate system in M.

T~":l
(g(V),(gOk-l)-l) is then a coordinate system in g(M) (cf., the




proof of [VI.30]), (gOk-l)-l(g(V)) = k(V), and the inverse of

(801(-]')-l is gOk-l. Since m, € CY(g(M)), we have 7 okl -

i
1

ﬂiogok- € Cq(k(V)); it follows that ﬁi € CU(M). We omit the

details required to verify the remainder of the assertions made

above. Now, certainly f € Ll(g(M)’MA
g(M)

is compact and Ag(M) is regular, and supp wif c Ul(i) for each

’Ag(M))’ since supp f

i € N. Then, using [VI.51.xi] and the preliminary result for

continuous functions with support in a coordinate patch,

I £ Doy = 1-2-1 f mf A my
g™ g(M)

z I (nif)og~Jg dXM
i=1 M

) [ 7, -fog-Jg di,
i=] M

fog-Jg dxM,

"
Xe—

the last equality holding, again, by [VI.51l.xi], since we obviously
have fog.Jg € Ll(M’MA ,AM). Thus, (3) has been proven, and, with
M

it, the theorem. a.

Let us observe that [VI.52] holds in the case r = n = m,
{.e., when M 1is open in Rn, and g: M-+R" is q-regular.

Then Jg = |Jg| ([VI.13]), and A

M’ Ag(M) become restrictions

of the usual Lebesgue measure A s SO (V1.52.2) reduces to the more
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familiar formula for the transformation of a Lebesgue integral over

an open subset of ]Rn; note the remark following [VI.47]. 1In

this case, [VI.52] complements [VI.44].

In the next group of sections, we present and examine various

regularity hypotheses for open subsets of Rr".

[ViI.53] DEFINITIONS. Let 2 be an open subset of

n

R (n>2), and q € W=},

(a) Let x € 30Q: Q is g-regular at x iff there exist

o e 2 - -~

an open neighborhood, Ux’ of x in R" and a

function ¢x € Cq(Ux) such that

(1) grad ¢ (y) # 0 for each y €U,
(11) aw = {y€ le ¢ (y) = 0},
(111) U _={y € u | ¢ (y) < 0}.

(b) 9 1is a q-tegularn domain iff Q 1is gq-regular at

each x € 3Q. u.

(VI.54] REMARKS. Suppose that Q CR" is open. (a) If i
2 is gq-regular at x € 32, then x lies in a relatively open

subset of 32 which is an (n-1l,n;q)-manifold (¢.g., the set

3, of [VI.53.a]), and Q 4s in fact gq-regular at each point
of this open subset. Consequently, any non-void set T C 3Q such
that Q 1s g-regular at each x € ' must be contained in an open

subset of 3% which {s an (n-1,n;q)-manifold and at each point 1 '




~

of which 2 1is gq-regular (e.g., the set {anﬂuy}; cf.,

Yoer
also, Remark [VI.4.b]). If Q 1is q-regular at x € 3%, then

Q "lies on one side of its boundary in a neighborhood of x."

(b) If Q 1is a q-regular domain with By # 0, clearly
92 4is an (n-1,n;q)-manifold. A q-regular domain need not be

connected.

[VI.55] PROPOSITION. Llet Q@ be aregularly cpen

subset ¢§ R".

(<) Suppose that M 48 an (n-1,n;q)-manifold which is
nelatively open in 3@. Then @ and 27 are

q-regulan at each point 0§ M.

(id) 1§ 99 48 an (n-1,n;q)-manifcld, then 9 and o'

are q-regular domains.

PROOF. (i) Choose any x € M. Since M 1is an (n-1,n;q)-

-~

manifold, there exist an open neighborhood, Ux’ of x in R"

and a function 6x € Cq(ﬁx) such that grad 5x(y) # 0 for each
€ { j = U  ( - 9

y €U, and MG {yEle ¢ (y) =0}. M is open in 33, so

we can find an open neighborhood, ﬁx, of x in R" such that

U Cﬁx and amﬁxcn. Let &_ = 3 |

x x x Ux: then it is obvious

-~ q -~ - -~
that ¢ €C (Ux). grad Ox(y) ¥ 0 for each y € U, and

aaﬂﬁx-,{yeﬁxl $ (y) =0}, If 1€ {1,...,n}, and y €R"

let us denote by A(1i) the increasing (n-1)-tuple which is

EYCY

obtained from {1,...,n} by deleting i, and write Yoy = F

(¥).
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Then, by the implicit function theorem, there exist an ix €

{1,...,n}, an open neighborhood of x, ﬁx C U_, an open neighbor-

n-1

X

hood of x(i ) Vx CR , and a function ¢ € Cq(\7x) for which
x

i
- - n ~ x
{y€wl o (y)=0}={yer’ y(ix) €V, y = ¢(y(ix))}-

Clearly, since W.Cu s
x x
] - - -~
[ = = v .
ly€wl o (y) =0} =30W

Now, choose € > 0 such that BZ(x) c ‘.Jx’ then choose & € (0, e/2)

n-1 ~ -
such that Bé (xuﬁx)) CVx and |¢(z)-¢(x(ix))l < £/2 whenever

z € Bg'l(x(i )) Set
X

.x gD n n-1
U, ¢ Be(x)f‘{y ER"| y(ix) € BG (x(ix))},

and define @x: Ux-'IR according to

i
¢x(y) 1=y x_q;(y(ix)) for each yEU.

Obviously, Ux is an open neighborhood of x 1in ]Rn, ¢»x € Cq(L’x),

and - grad °x does not vanish on Ux' Moreover,

annux = {y€ uxl 0x(y) = 0}:

Y and

€ : ¥
for, 1f y a.orux, then year"wx, whence y(ix)e x

{
y %= c(y(ix)), so ¢ (y) =0; 1f y€U and ¢ (y) =0, then

1
n-1 = x
y(ix) € B (x(ix)) Cv, and y " = @(y(ix)), so y € 3Q. Next,

define




= o= M . 1.
v, = {y€ uxl 0. (y) <0} and U, = 1{y€ Lxl ¢ (¥) > 0}y

= U
note that Ux Ux_UUx+ {BQ‘UX}. We claim that (exactly) one of

the equalities nﬁux = Ux-’ QﬂUx = U is true; if the former

X+
holds, then U  and ¢  fulfill all requirements of (Vi.53.a],
. while if the latter equality is valid, then Ux and —¢x fulfill

those requirements. Thus, the g-regularity of  at x will y

follow once the claim has been substantiated.

To see, then, that (precisely) one of QﬁUx = Ux-’ QFUK =
Ux+ is true, suppose that Ux- and Ux+ have been shown to be
-t
connected. Obviously, Bﬂde_ =0, BQﬂUx+ =0, and Q = Q'o,

S0

o ‘o
= NV e YT N
U= (U U, " %),  and DU, 0.

U = Uy

% The connectedness of Ux— implies that not both Ux_“Q # 9 and
Ux_ﬁQ'o # @ can hold, for  and 2'° are separated. Similarly,
Ux+Oﬁ ¥ @ and Ux+OQ'° # @ cannot both be true. We do know that
at least one of Ux_ﬁQ $ 0, Ux;WQ # ® must be true, for otherwise
we should have U ™ = 9{U VU U{3U }} = @, which is impossible,
x X- x+ X
since x € 32 and Ux is a neighborhood of x. 1In fact, exactly
one of QU _#0, U #@ holds: if both hold, then £'°NU _ =

i a, Q'O“Ux+ = @, by the observation made above. Since & is

regularly open,

|
:
!




3(0'%) = ' ng'o'"

Thus, x € 3(2'°), U  1is a neighborhood of x, but U =
10 10
~{y = i i s
Q {LxJJUxJJ{a(Q )”Ux}} #, which is impossible. us,
precisely one of QﬁUx_ ¥ 0, Q“Ux+ # @ is true. We .r der the

two cases, in turn:

(i) Suppose that au__ 4 @: then >y, = @, and

Q‘°f\ux_-0. If yEQW, then y¢ a2, y§U_, but yeEU,

so we conclude that y € Ux—' On the other hand, let y € Ux_:
then y € 2'° and y§¢ 30, so yE€Q, giving y€ QﬂUx. There-
fore, O“Ux = Ux-’ in this first case. Since QWUX+ = @  obviously

we cannot have QU= U .
X X+

(ii) Suppose that U, ¥ @: then QU =@, and
x+ x-
Q'OWU = 0. Now we find, via reasoning similar to that just carried
x+ |

out, that QﬁUx =y (and QWUx ¢ Ux—)'

x+

For the completion of the proof, there remains only the
verification of the connectedness of Ux- and Ux+’ We shall prove

that Ux- is connected, the proof for Ux+ being quite similar.
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It suffices to show that Ux- is pathwise connected. Then, choose

71
i

X
Y3

1f

and Y, in

< ¢y, ),
J(ix)

U

X-

n n-1 .
y SO yj € Bg(x), yj(i ) € 35 (x(i )), and
X X

for j =1, 2. Set

i

-1 X A

’ "{YER“I ooy €80 N 0,y R e sk - 5
$ (1x) 8 (1x) (lx) 2]
y € BG’ then y € Ux’ since y(i ) € Bg-l(x(i )), while
x X
i i
2 x x:2
x| =V - -

ly xIn {IY(ix) x(ix)ln-l+'y x 717}

[}

A

A

i |2

. 2 X
/tly(ix)-x(ix)!n-'l‘kly -¢(x(ix)) }

/(| - |2 +i
" y(1x) (1)'n-1" 4

2
\/{ 8 2+ %“}

so y € B:(x). Moreover,

i
X
¢X(Y) =Yy "¢(y(ix))

- 4(x,, D=3y, -5
(1) (1)°7 2
€

< letx, D-elr V-3
- (ix) (1x) 2

< Q,
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so yE€U _. Thus, B, CU . Define, for j =1, 2, 93 €R" by

i
- x .= - _e‘
Vym el )7

~k k
Yj (= Yj. for k € {1,...,n}, k ¢ ix.

Clearly, 9j € B6 for j =1, 2, and Bé is convex, so the line

segment joining }1 and 92 lies in B hence in U, - We

6’

shall show that the line segment joining yj and y lies in Ux-’

3

for j =1, 2; from this, the pathwise connectedness of Ux-
follows easily. Then let j = 1 or 2, and suppose Yy 1is on the

line segment joining ¥y and ij' {.e,y= yj+s(§j—yj) for some

i i i 1 i i
X

s€ 0,11, so y ™ =y MG oy =y s0txgy -y - 5,
X

n-1

= c { v =
and y(ix) yj(ix) Bé (x(ix)) (having noted that yj(i )

X

1
yj(ix))- Observing that ¢(y(ix)) = ¢(yj(ix)), l@(x(ix))-¢(yj(ix)).

i
¢/2, and recalling that ij < ¢(yj(i )), we find
x

i i i
X X X €
y '¢(Y(ix)) Yj -é(yj(ix))+5[¢(x(ix))‘yj = 2]

i
X €
= (1-5){}'j -¢(yj(ix))}+s{¢(x(ix))-¢(yj(ix))- E}

< 0,

{.e., ¢x(y) < 0. In order to prove that y € Ux—’ we now need only
show that y € Ux’ for which it remains to be shown that y € B:(x).

We consider the two possible cases:

————e




i

X £

= ¢(x(ix))- 5 then, first,

ix iX ix ix ix
y T=6(x ) =y . -¢.. Y4s(y "=y ) >y Tee(x, 1),
(ix) j (ix) 3 73 j (1x)
and

i i i
X X € X

y T-¢(x ) =y T-¢(x,. (J¥s|e(x Y- = -y
(ix) 3 (1x) (ix) 2 75

i
(1-9) (y, "¢ (x(; D)8 5
X

| A

€
-E’

{
i
!

which give
lyi"-¢<x(i Pl = ~<yi"-¢(x(i )>>,:_-(yji"-¢(x(i ) = ijix-¢<x(i )i
x x x x
Thus,

i 1

2 2 X %2
ly-x| |y(1x)-x(ix)|n-1+ly -x *|

yeeq yxep 512ty Botx )12
Y1 )™ @) ln-1" (1)

ly =, 2 +|yix-¢(¥ y|2
1)@ ey (1)

| A

2
ly =13

2

< € N

the latter inequality holding since yj € Ux'

i i €

- x
(11)' Assume that ij > yJ = 0(x(ix))- 5 i mow,
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i"-c(x ) = (1-s)( i"-¢(x s = > (1- gl ga e
Y (1) Y5 (ix9 2 A R S A
and
I 1 €
y ‘¢(x(ix)) = (1-5)(YJ -¢(Yj(i )))+(1-S)(¢(Yj(i ))-®(x(i )))'S' 5
x x x
< (1-s) (¢(y )-¢(x ))
31 (1)
< £
5 -
i
Consequently, |y x-¢(x(i ))l <¢/2, so :
x i
2 ]

i
2 2 x 2 2 ¢ 2 i
ly-xln = 'y(ix)-x(ix)In-l"']y -'Mx(ix))l <6+ . < ¢ :

In either case, we find y € B:(x). Then, as noted, y € Ux-’ and

the connectedness of Ux- follows.

We have now shown that O 1is g-regular at each point of M.

To see that Q-' is also q-regular at each point of M, simply

- -1=0 -11010
observe that Q is also regularly open (since Q = Q =
2°'° «'%=q7") and 3(27') = 30 (since 3(2”') =

- ¥ -y - - -0t -

YRR =070 = 079" = 0’0 = 30), so the first part of

the proof may be applied with @' in place of  to secure the

|

desired conclusion.

(1i) This statement is an immediate consequence of (i),

in view of the definition [VI.53.b]. a.

(VI.56] DEFINITION. Let Q CR" be open. Suppose that
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x € 30, and there exists an open neighborhood of x in 53, M,

which is an (n~-l,n;l)-manifold. If N € NM (x), then N 1is an
X

exterion newmal for 30 at x 1iff there exists a positive ¢ such

that

x+sN € Q for -§ <5 <0 and

x+sN € Q-' for 0 <s < 8. n.

Suppose that, in the notation of the preceding definition,
Mx and ﬁx are 30-open neighborhoods of x which are also
(n-1,n;1)-manifolds. Directly from the definition [VI.5], it is
easy to see that 'I'M (x) = Tﬁ (x), hence that NM (x) = N& (x).
x X b3 x
From this, and the fact that NM (x) 1s a one-dimensional subspace

X

of"Rn, it follows readily that there can exist at most one exterior

and v, € NM (x) are exterior
x

unit normal for 32 at x: if Vi

unit normals for 382 at x, then either Vi ® vy Oor vy ® -y,
but the latter implies that x+sv2 € @ for all sufficiently small

positive s, which is impossible. Thus vy = v,

[VI.57] PROPOSITION. Let 9 bean open subset c§ R"
(n > 2). Llet T be a non-void refatively open subset of 3¢ such
that, for scme q €N, 230 48 gq-regulan at each peint c§ T.
Then T 45 an (n-1,n:q)-mandifold, and thetre exists a wiijue
continuceus function v_: T +R® such that vo(x) 48 an extenicn

T

unit noamal o1 39 at x, 4or each x €T Ve 43 called the

exterior unit normal field for T. Moxecver, 4§ q > 1, zhen




v, € COLl-m™ i qeEn, cn vy € CTGR™ 4§ q = =.

In particular, 45 O 43 a q-regular demain (witn 35 4 2,

then these conclusdons held with T = aq.

Before presenting the proof, let us state that the notations
20 and an used herein shall be standard in the sequel, whenever

the requisite hypotheses be fulfilled.

PROOF. Let x € T. Since 3R 1is g-regular at x, there
exist an open neighborhood, Ux’ of x in R" and a function

q ﬁm =
Qx € C (Ux) such that grad ¢x(y) $# 0 for each y € Ux’ }9; Ux
{y € Ux[ ¢ (y) =0}, and U = (y€ le ¢ (y) <0} (so, also,
Q-'FUX = {y € le ¢x(y) > 0}). T 4is open in 3G, so we can find
an open neighborhood, ﬁx’ of x in R" such that ﬁx c Ux and
3~U_ CT. With & := ¢ | U, it is clear that ¢ € c3(C)),

x X x x x x

& U A = 0 & Y = 0}
grad ¢x(y) # 0 for each y € U.» and T U, {y € le ¢x()) 0}.
Thus, T 1is an {(n-l,n;q)-manifold. Obviously, we also have

-~ ~ - - o~ -~ ~
1 = = 1
QPLx {y € le @x(y) < 0}, and @ ﬂUx {y € le ¢x(y) > 0},
We now know that x is contained in an (n-l,n;q)-manifold which is
open in 50, wvdiz., T. According to [VI.7], @grad 5x(x) € N_(x):
we shall show that grad 5x(x) is, in fact, an exterior normal for
9% at x. For this, choose e; > 0 such that B:,(x) c ﬁx and
X

set

€

iR -

by (s) := & (x+s: grad ¢ (x))  for ls| < €% ™ Tgrad o

This clearly defines a function Vo € Cl(—ex,cx), for which

B e

I

i
)
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wx(O) = 0 and
w;(s) = grad Qx(x+s- grad ¢x(x))o grad ¢x(x), for |s| < €y

< 2
]
Then wx(O) = |grad @x(x)ln > 0, whence there is a Gx € (0,cx)
such that w;(s) >0 if |s| < § . Now, if 0 <s < ¢, we have,

for some § € (O,S),
5x(x+s- grad 5x(x)) = wx(s) = wx(0)+w;(§)'s = w;(é)-s > 0,

showing that x+s- grad 5x(x) € 0~'. 1In a similar manner, we can
show 5x(x+s- grad 5x(x)) <0, 4.e., x#+se grad 5x(x) € q, for
-5, <8< 0. All requirements of Definition (VI.56] are thus
fulfilled by grad 5x(x), and we can assert that it is an exterior

normal for 3Q at x € T.

Now, define v r »R" by

o
grad 5x(x)
“r(x) = |grad éx(xf]n *

for each x €T,

For each x €T, lvr.(x)ln =1 and vr(x) is an exterior normal

for 30 at x; by the observations following [VI.56]. Vr is

the unique function with these properties. To see that Vp is

continuous, choose x € I'. For each y € Pﬁﬁx, we may suppose

- - -

that Uy = Ux and °y = °x’ whence

grad 5x(y)
vr(y) = Terad éx(yfT; . for each

y € ru_,

showing clearly that vr is continuous on P“ﬁx, thus, in particular,

PRI, VU




continuous at x.

Next, suppose that q € N with q > 1. Let (V,h) be a

coordinate system in T (recall that T is an (n~1l,n;q)-manifold):

to show that Vp € Cq-l(FﬂRn), we must demonstrate that vrch-l €

¢ L(h(v);R"). Select % € h(V), and write x := h-l(X). Then

Vﬁﬁx is an open neighborhood of x in I', and h(V’ﬁx) is an open

n-l

neighborhood of X = h(x) in R ~, with h(V“ﬁx) C h(V). Since

grad $x(y) N
= - [ i)
vr(y) Terad ¢x(y)in for each y € v,

while h-l(ﬁ) € V\ﬁx whenever § € h(Vﬁﬁx), we have

1. grad 5x(h-l(§)) . .
vrch (y) = - 1 for each y € h(VﬂUx).
| grad ¢_(h (y))ln

Now, h™ 1€ c¢3(h(v):R"), and grad % € cq'l(ﬁxann), so the latter

equality implies that (v_oh 1)] (v, ) € cq'l(h(vrﬁx)akn). Thus,

r
vroh-l is of class Cq-1
h(V), whence vroh-l € Cq-l(h(V)ﬂRn). As noted, this implies that

in an open neighborhood of each point in

vp € Cq-l(TﬂRn). If q ==, the proof of the inclusion v €

Cu(r‘;Rn) is almost identical.

The final assertion of the proposition is a simple application

of the statements already proven, because of Definition [VI.53.b].

It is worth isolating the following fact, essentially

verified during the just-completed proof of [VI.57].

0.
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(VI.58] LEMMA. Llet Q be ai open subset ¢§ R". Let

x € 3Q, and suppose that Q 48 q-regular at x {(q € NU{=}].

nonmal fon 3 at each y € 3.

grad ¢x(x) is an exterior normal for 230 at x. But the same

X y
function for y fulfilling the requirements of [VI.53.a].

We shall later find the following technical fact useful.

Then there exists a positive 6, such that, whenevetr x € 32,

x+sv ) € Q-' if 0 < s« GQ,

aqn(*

and

x+san(x) € Q if -GQ < s < 0.

14 the open nedighbothood of x, U, and zhe functicn ¢ € Cq(Ux)

are as 4n the defindition [VI.53.a], then grad ¢ 45 an extendlex

PROOF. Let U and ¢ beasin [VI.53.a]. 1t is first of
all clear that the relatively open subset of 23Q, aQﬁUx, is an

(n-1,n;q)-manifold. In the proof of ([VI.57]., it was shown that

reasoning used there serves to prove also that grad ¢x(y) is an
exterior normal for 9 at any y € awwux, for, if we select any

such y and take Uy = U and ¢ = Qx’ we obtain a set and a

a.

[VI.59] LEMMA. Llet 9 be a non-void preper subset ¢4 R"

which i3 a q-regulan domain for scme q € NU{=}, with 3Q compact.

PROOF. Fix x € 3. By the gq-regularity of O at x, we

can find an open neighborhood of x in 'Rn, Ux’ and a function
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q
¢x €C (Ux) such that
grad ox(y) # 0 for each y € U, (1)
3w = {y € uxl o, (y) =0}, (2)
and
oy, = {y € u | ¢ (y) <0}; (3)

then grad @x(y) is an exterior normal for 3Q at each y € 3CWUX

({VI.58]). Choose ¢ > O such that Bgs (x) C U, and set
X

n -
M, = sup {|grad ¢x(y)|n| y € Bex(x) }.

Now, if y € B: (x)” and |s]| < ex/Mx, we have
x

. - | L]
ly+s+ grad ¢_(y) -x| < e *ls] Mo< 2,

S0

n
y+s+ grad ox(y) € BZex(x) C Ux'

Thus, we can define wy: (-ex/Mx, ex/Mx) + R by

wy(s) 1= Ox(y+s- grad ¢x(y)) for [s| < ex/Mx,
(4)
whenever y € B: (x)";
x
: € c%¢-
for each such y, it is clear that wy c( ex/Mx, ex/Mx), with
' .
wy(s) = grad ¢ (y+s: grad ¢ (y))e grad ¢ (y), Is| < e /M, (5)

From the latter equality,
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y'(0) = |grad ¢ (y)l2 >0 for each y € B (x)7,
y X n €y

with which we can assert that there is a positive m such that
. 2 2 n -
$'(0) = |grad ¢_(y)|° > m for each y €B (x) . (6)
y x n— X €y
Thus, the function (y,s) \» w;(s) is, in view of (5), continuous

n -
on ch(x) x [-ex/2Mx, ex/2Mx] (whence it is uniformly continuous

there), and, by (6), positive on BZ (x) x{0}. These facts imply
x

that there exists a Gx € (0, ex/ZMx] such that

w;(s) >0 for each y € BZ x)~ and for |s| < 8. D)
x

indeed, by the uniform continuity, we can select 6x € (0, Ex/ZMx]

so that
lw;(s)-w;(O)l < m:/Z whenever y € B:x(x)-, ls] < 8,0
giving, for such y and s,
2
BIC8) = 41 (0) 4+ (84! ()] > mi- 2% > 0
y y Yy Yy x 2 )
Note that, by (2) and (4),
9,(0) =0  for each y€ asznn'e‘ (x)". (8)
x

Now, choose any y € BZ (x)N3Q and s € (0,5x); the mean-value
x

theorem shows that there exists an sy € (0,s) for which
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ox(y+s~ grad ®x(y)) wy(s)

wy(0)+wy(sy)°s

' .
vy(sy) s
> 0,

having used (7) and (8); we have already convinced ourselves that

y+s+ grad ¢x(y) € Ux’ while (2) and (3) obviously imply that
-
ny - (3
Q= {y le o (y) > 0}.
From these data, we infer that
y+s¢ grad @x(y) € g’ whenever y € aﬂﬁBZ (x),
x
s € (0,6x).
By reasoning in an analogous manner, one can show that
y+s+ grad ¢x(y) €Q whenever y € 39“32 (x),
x

s € (-Gx,O) .

; -1 A
= L] N ,q
From (9) and (10), since Vag |grad Qxln grad ¢x on & Ux’

by taking note of (6), we have
y+s-v39(y) € a2’ [§93] whenever y € BQﬁB: (x), and
x
0<s <m§ [~m 6. < s < 0].
X X x X

Now, (11l) holds for each x € 3Q. To complete the proof,

(9

(10)

(11)
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2
xi}i-l so that
(8" (x )}9~ affords a cover for 3%, and take
ex 1" i=1
i

we use the compactness of 30 to select {

L
§. :=min {m_ 6_ }, _;
Q xi xi i=]1

it is easy to show that this 69 possesses the desired property. a.

The properties of regular domains in the class described y
in the following definitions are particularly nice, as we shall

presently discover.

(VI.0] DEFINITIONS. Let 2 CR" be open. & is a

Lyapuncv domain iff

(1) Q@ 1is a l-regular domain
and

(ii) the exterior unit normal field for a9, is

Van?
H&lder continuous, <{.e¢., there exist an a > 0 and

an o € (0,1] for which

o ]
[vaa ) =vaa(x) 1, < alxy=x; 1]

(L

whenever Xis Xy € an.

Let 2 CR" be a Lyvapunov domain. Any ordered triple
(a,a,d), where a >0 and o € (0,1] are as in (ii), and d > 0
with ad® < 1/2, shall be referred to as a set ¢of Lyapuncy censtants

foen Q.
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Let be a family of Lyapunov domains in R". The

{QI}IGI

family is said to be wiifcumly Lyapuncv iff there exists an ordered
triple (a,a,d) which is a set of Lyapunov constants for E‘, for

each 1 € 1. N.

[A.1.61] REMARKS. (a, Let 2 CR" be a l-regular domain

such that 3@ 1is compact. Suppose that, for each x € 3%, there

cmee N

can be found an open neighborhood, Ux, of x in R" and a
function ¢x € Cl(Ux) as in Definition {VI.53] which is also such
that (grad ¢x)| BQWUX is Hélder continuous: there exist an

a >0 and a € (0,1] with
x x

|% -%, |

X X, € 507U .
27X for x,, X o0 Ux

| grad o, (x,)- grad Qx(xl)ln'i a 17

Then @ 1s a Lyapunov domain. For, let € > 0, with Bg (x)” ¢
X

] ] e n =
U, and a; > 0, with |[grad @x(y)ln > a,; for each y Bex(x) .

for each x € 30. If x € 3Q, it is then easy to see that

X N grad ¢x(i2) grad Qx(il)
l“an(xz)'“an(x1)|n ® |Tgrad ox(iian ~ Tgrad ¢x(i1)[n n

2a
<o IRk | K, for X, X, € 527B] (x).
x n x
Choosing a finite set {x,}% . C aQ such.that {30087 (x,)}7
1 i=1 ) h Cx /27717 Ti=1

i
covers 37, it follows that

‘ - lyy=y, 1% 3
ldag(yz) van(yl),n 2 31Y%Y i for yi» ¥, € 36,




{
in {a_ }, a := max max 4 ; s
1ci<m X 1<icn (%, )

50 is Hélder continuous, whence

~N
:?\\\
A
8
VRN
o
A
a8
———
(4]
o
[y
| S —
Q
\—-—Y——_/
—__
-]
jo
c
»
<

8 1is indeed a Lyapunov domain.

(b) Suppose that CR" is a q-regular domain, with
*
q >2, and let 30 be compact. Then & 1is a Lyapunov domain. To
see this, for each x € 39, let Ux CR" and ¢x € Cq(Ux) be as

n

in (VI.53], and choose € > 0 such that BE (x)- € Ux; by the

X

X . . n
mean-value theorem, grad Qx is Lipschitz continuous on BE (x).
X

Following reasoning similar to that employed in (a), we even find

that Van is Lipschitz continuous on 3Q.

(¢) 1In view of [VI.55], we can replace the hypothesis of
(a) [(b)] that Q@ be 1l-regular [q-regular, with gq > 2] with the
hypotheses that @ be regularly open and 3¢ be an (n-1l,n;l)-
manifold [(n-1,n;q)-manifold]}. Maintaining the other hypotheses,
we can conclude in this case that Q and ' are Lyapunov

domains.

f[vi.e2] STANDARD NOTATIONS AND
CONSTRUCTTIONS. It is convenient to introduce here
certain notations and simple facts relating to the geometry of the
boundary of a Lyapunov domain. Throughout this section, cr"

is a Lyapunov domain, and x € 3, See Figure 1.

e




(1) We denote by e R" - x+TaQ(x) the orthogonal

~“r

projection map of Rp onto the tangent hyperplane to sl at x,
X+T59(x)’ so that, for each ¢§ GIRn, ﬂx(i) is the unique element

of x+TaQ(x) such that

lg-n (&) ], = inf {:g-élnl i € 4T (x) ). (1)

Letting Px: R" - Tag(x) denote the orthogonal projection onto
the (n-l)-dimensional tangent (sub)space TaQ(x) C'Rn, it is a

simple matter to check that

"x(i) = X+Px(€—x), for each £ ER"; . (2)

indeed, (2) is a consequence of the fact that (1) characterizes

. - - _ s '
ﬂx(E) in X+T39(x) and the equality |€-ﬂx(g)|n = |t (x+Px(, X))‘n
for ¢ e:m“, which follows, in turn, from (1) and the familiar

property

|(g=x)-P_(c-x)| = inf {|(g-0)-E[ | E €T (x)}.

We shall denote by {é:}::i an orthonormal basis for TaQ(x):

then {éx,...,éx ,V.~.(x)} constitutes an orthonormal basis for
1 n~-1’"3Q

R". Let us show that

n

s-wx(i) = {(s-rx(a))-vaﬂ(x)}vag(x). for each £EER: (3)

1f ¢ €R", cthen g£-m (£) = {(E-n (£))ev o(x)}v (%)

n-1
+ [ (- (0))E(e}, but £-m (€) = (£-x)-P,(5-x) is in the
1=1

154

N
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orthogonal complement NSQ(X) of Tar,(x), so (»:-wx(g)).éi‘so,

for each 1 € {1,...,n-1}. Thus, (3) is true.

(11) 1f d >0, we define T :=n | (amszi‘(x)). Even
thoﬁgh Hx depends upon d, we omit any indication of this

dependence in the notation, which should cause no confusion.

(11i) Let A R™ + R" denote the linear isometry such

that

Aé’.‘=e§n), i=1,...,n-1,]
x i i
= (M
Axan(x) en ’

and then define JCx: Rr" - R” according to

Y e - n
Ng(g) : Ax(E x), for each £EER,

Clearly, J(x € Cw(an;]Rn) is an (affine) isometry, hence a homeo-

morphism, of R" onto itself; we have
31 -1,
o (8) = A “itx, for each £ ER".

Since Ax preserves inner products,

- - n
H (£ )oK (£,) = (5-x)e(E,x),  for £, £, €R".

Consider the open set -'Kx(S‘.) C]Rn, which is at most a translated

and rotated copy of . Indeed, it is quite simple to see that

AH () = ¥, 20),

(4)

(6)

(7N

(8)
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showing that 0 € 3(W¥(Q)}, since M&(x) = 0, and, for d > 0,
gD . "
Kx(aﬁ”Bd(x)) B{M§(Q)}P3d(0), (9

a0 - ARD
H (OB (x)) = 3 (Q) B,(0). (10)

Next, let us choose any y € 3{ﬂ¥(9)}, and let Uy be an open
neighborhood in R" of H;l(y) € 3n, 6y € Cl(ﬁy) such that
a o (¢ 0 f €U 36U = {g € 1 ® = 0}, d
gra y( ) # or § A {t Uy! y(£) }, an
Qg = € [ ¥ . tt = K (U =
0, = (6 € 0] &.(e) <0} Setring U, = H (U), o

‘<

5y°(ﬂ;1] Uy), it is plain that Uy is an open neighborhood of
n 1

in BR%, ¢ ect@), s (D} W ={te€u| ¢ =0 d

n y ( y) 3 ( )} y {g y' y(E) }, an

J('x(ﬁ)'“L'y = {£ € Uyl ¢y(£) < 0}, Further, for £ € Uy,

z ol -1
do (&) = a& G0 (5))oDi (&)

S | -1
= 4
d¢y(dx (C))OAx
S S PR |
- AL db GO,
-1* -1
vwhere Ax is the adjoint of Ax . Since Ay is an orthogonal

transformation, it follows that

x -1
grad ¢y(£) = A grad ¢y(ﬂ¥ (&), £ € uy. (11)

» - i -l
From (11), we have |grad vy(i)ln | grad @y(ﬂ; (E))ln $# 0, for
£ € Uy. Thus, M;(Q) is 1l-regular. Moreover, grad ¢y(£) is
then, for £ € B{M;(ﬁ)}”uy, an outer normal for 3(1#(9)} at £,

while grad 5y(1;1(5)) is an outer normal for 3¢ at M;l(s),

and (11) shows also that
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S
Vaga (@)} (8 7 Ay @ () (12)

(12) clearly holds for each & € S{HQ(Q)}. In particular, note

that

va{x¥(9)}(0) Axv39<x) e . (13)

Now, if a>0 and o € (0,1] are such that (VI.€0.1l) holds, we

find, whenever 51’ &2 € a{ﬂ;(n)},

-1 -1,
'“a{x¥(n>}‘52)‘Vs{x¥(c)}(51)|n = A (T (B -A v GETGE D

X o

-1 -1 |
[V @ (B =y, GO (e ) T

Ia

al’}C e |2

a
= ale,-gy -

Consequently, we reach the entirely expected conclusion that Hg(Q)

is a Lyapunov domain; any a > 0 and o € (0,1] as in (VI.60.1)

for

have

for,

0.

30 will also do for B{ﬂ;(ﬂ)}. In view of (13), we obviously

n

n
Ta{1¥(ﬂ)}(0) = {£ €R"| ¢ = 0}. Q1

Next, we see that

(Ax_\')n =0 whenever y € Tap(X): (13)

(n)

le(n)
n n

supposing that y € Tap(x)' (Axy)oe - yOA; = yovag(x) =

As an implication of (15), we find
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n

ﬂi(i) = {E‘ﬂx(i)}-vag(x) = (E-x)ovag(x), for £EER. (16)

In fact, let ¢ €R". Then = (g)=-x = P (¢-x) € T. (x), so
X b 4 oft
{Ax(wx(a)-x)}“ = 0. Writing £ = x+(¢-7_(£))+(n _(£)-x), we compute,

using (3) and (4),
1#(5) = Ax(£°x)

= A (g-1 (£))4A_(n_(£)-x)

(n) . |
n +Ax(ﬂx(g)-x)y ‘

= {(E-WX(E))oan(x)}e
(n).

since M:(E) = ﬂ;(g)oen

the first equality in (16) follows.

For the second equality of (16), we can write £-ﬂx(£) = (£=-x)+

- t - x - - € .
(x rx(g)) and simply note that x nx(g) Px(g x) TaQ(x) It
is important to point out also that
ui - “i°“x’ for i=1,...,n-1. (17)

To see that (17) is true, choose i € {1,...,n-1} and ¢ €R".

Then

3 (£)kom_(€)

. (n)
{Kx(i)-ﬂ;Oﬂx(E)}oei

(n)
i

{Ax(i-x)-Ax(ﬂx(E)-x)}oe

(n)
A (5= (£))eey

{(E-ﬂx(E))Oan(X)}e(n)oein)

n
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Finally, it is easy to show that

DTV PSS

n

K (x#T () = (£ €RY| g = 0} (18)

1f £ €T (x) then X (x+£) = Ag, but (Axg)“ =0, by (15):

el
on the other hand, if £ €R" and £" =0, then A;li €T, (%)
(n)

n

(since A;lsovag(x) - EOAxan(x) = foe = 0) and ﬂ;(x+A;1£) =g,

(iv) We shall define ﬁg: x+TaQ(x) »> %L by

K (5) := (Mi(g),...,xi'l(g)), for each £ € x+T,_(x). (19)

. j
Obviously, Kx is continuous. From (18) and the injectiveness of .
. ;o

ﬂ;_ it is routine to prove that ﬂ; is a bijection. Since the

inverse i;le ZRn'l -+ x+TaQ(x) is just the map é > K;l(é,O) on
Rp-l, we see that ﬂ;l € CNGRn_lﬂRn). Then ﬁ; is a homeomorphism,
with
1 n-1 . i .
¥ 4 = A s
FCE) = | A D)
n-1 1
= | A H T (E
1,8, 036 (.0
n-1
-1 (n)
= A
|8y DG (6.0)e | j
- 10, ATk - |
i=1 %x 3
n-1
- | A, &
|4 &l
= 1’

for each £ € r™L It is trivial to see that x+Tar(x)




Van(®)
n
Bd(X)
Hx(y)
hif
X
x+Tag(X)
e(n) X
n X

n .
/,/""‘;Ki;ﬁd(O)
"BP-I

h () = & (2 ()

ﬂ¥{Q}

FIGURE 1. Constructions associated with
Lyapunov domain
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(= {€ €R"| ﬂ:(i) = 0}) is an (n-1,n;»)-manifold; the preceding

observations combine to show that ﬂ; is a coordinate function

for x+TaQ(x).

, for i€

From (17) and (19), we obtain J(i = J}ionx

{1,...,n-1}, so

-1 -
X, = (J(;‘(J(‘)“ Iy = @ on 3. (21)
Finally, suppose that ¢§ € x+Tap(x). Then
lg-xl = 3 () ()| = [ ()] = 1 (] _;, (22)
since ﬂ:(g) = 0, 1in this case. Thus,
~-1,2 : 2 n-1
|M; (5)-x|n lgln_l for each EER . (23)

We begin our study of Lyapunov domains by pointing out one

of their most fundamental and useful properties.

[VI.63] PROPOSITION. Llet 9QCR" be a Llyapuncy domain,
and select a > 0, a € (0,1 such that
a ~
lvm(xz)-vm(xlﬂn < alxz-x1 n for X, Xy € 30.

Llet d be anv positive numbet satisfying ad® < V2@ 4in patticulat,
(a,a,d) may be a set ¢ Lyapuncv constants gor . Then, gen each
x€a, N (=] SG'B:(x)) 8 an dnjecticn ¢f AMBI(x) lntc

X+Tag(x)'

PROOF. Choose x € 3. We begin by showing that, whenever
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£ € Sﬂﬁng(x), there exists a §, > 0 such that f+s...(x) €

11
for -GE < s <0, and £+san(x) € a7 for 0 <s < 66: since
0 is 1l-regular, we can find an open neighborhood U€ of £ in
R" and a function ¢€ € Cl(UE) such that grad ®£(y) 4 0 for
€y, VU ={y€ ¢ = 0}, U, = {y €
y €U, Y, {y ugl E(y) }, and U, {y UEI
! . (y) < 0} (so also 9"nu£-{yeugl ¢.(y) > 01). Choose
\
» € > 0 such that BZ(E) Cc UE' and define ¥: (-£,e) R by
V(s) 1= ¢ (E4sv (X)), for |s| < €.

Clearly, y € Cl(-e,e), %(0) = 0, and y'(s) =

grad ¢£(£+san(x))oan(x) for |s| < €. Thus,
v'(0) = grad 0. (B)ev, (x) = [grad ¢, ()] +vyo(B)ev . (x), (1)

the latter equality following from the fact that grad ¢€(5) is an

exterior normal for 3% at §£. Now,

Vag(Bev, (0 = 1- 2 v ()-v, (0|2
> 1- % azli-xlia
> 1- % azd20
o,

since !E-xln <d and ad® < v2. 1In view of (1), we conclude that

¥'(0) > 0. Since ' 1is continuous, there exists a € (0,¢)

8
£
such that y'(s) > 0 if |s] < ¢.. The mean-value theorem, coupled

with the equality ¢(0) = 0, implies that °£(£+SVBP(X)) = u(s) < O
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if —65 < s <0 and ¢;(E+san(X)) = Y(s) >0 if 0 < s < 65.

(x) 1lying in U_ whenever |s| < e, we obtain

13
the inclusions 5+svaﬂ(x) €q if =6

Therefore, £+san

. O-,
£ <s <0, £+suaﬁ(x) € G

if 0 <s < 3§ as required.

E,

Now, let us suppose, contrary to the conclusion of the
proposition, that there exist distinct El’ 52 € BQ“BS(X) for which
Hx(sl) = Hx(gz). Writing y := ﬂx(gl) = nx(gz), we have, by

(v1.62.3),
Ei = y+sian(x), i=1, 2, i

where s; i= (Ei—y)ovag(x): since El # &2, it nmust be that s_ #

1

Sys and we may suppose that $1 < S,- Set
(5152) 1= {y+svag(x)[ s; <8< sz};

note that (5152) C Bg(x). Now, whenever =§ < s < 0, then

&

y+(s2+s)vaﬂ(x) = ;2+svaa(x) € Q, while 0 <s < § implies that

‘1
-1

y+(sl+s)vaﬂ(x) - 51+svaﬂ(x) € @ ', whence it is clear that (5152)

meets both @ and Q—'. Since (5152) is obviously connected,

and 2 and Q' are separated, (5152) must meet 2. Thus, there

exists S5 € (51’52) such that §,_ := y+s (x) € SQ'Bg(x).

3 3V20
Repeat the process with, in turn, El and 53, and €3 and 52:

€ € i =
there exist s, (51,53) and sg (53,52) for which si :

y+sivan(x) € aﬁ’B:(x) for i = 4, 5. Continuing in this manner,

we generate a set of distinct points {si! i €N} C [51.52] such
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that £, := y+s_ v__(x) € 30°B"(x) for each i €N. Let (s. )
i i on d i

K k=1
be a convergent sequence in {sil i € N}, converging to Sy €
[sl,sz]. Clearly, klimm Eik =& = y+sovan(x), from which it is

easy to see that &9 € BQ“B:(x), since 3% and {y+svan(x)[

$; s =< sz} are closed, the latter being contained in BZ(x). We

-t
have §O+svag(x) € Q if -GEO <s <0, £o+svan(x) € Q if
- - ; 1]
0 <s < 660’ showing that Ei EO+(si so)an(x) € (35) for
n n
some sufficiently large m, since the sequence (si ):=l consists
k

of distinct points and converges to Sg° This is impossible, con-
tradicting the inclusion {sii i €N} € 30. We conclude that "y

is injective. 0.

In Parts I-V we deal with a number of integrals over
boundaries of Lyapunov domains. In order to facilitate those
computations, we wish to derive here various estimates involving
geometry quantities associated with such manifolds, as well as
point out the existence of certain distinguished coordinate
systems in the boundary of a Lyapunov domain. We begin with the

prototype setting.

[VI.64] LEMMA. Llet 2 CR" be a Lyapuncy domain. Suppese

(n).

T 20! and vgn(o) =e

that 0 € 32, with T,(0) = (¢ eR"| ¢
Llet (a,a,d) be a set c§ Luapuncv constants fen Q. As wsual,
My 39033(0) - TaQ(O) denctes the restuction og the cnthegonal
prejection; 4n the present case, we have




1
Mo(e) = (67,

ety z @ Dy 0y g e 383(0) .

Then
. . - n-l It : - n -
(4) the set Dy := {{ €R | (£.0) € (3B (0)); =
E(l""’n-l)(amBz(O)) 45 an open nedlghbewnced of
0 «n mn'l, and there exists a functicn f € Cl(Do)
such that
207B(0) = G(£) := {(5,£(A)| &€ D). (1
In fact, f£: DO +R 48 glven explicitly by
£8) = HPE,0,  fon each £ €D
Thus,
My 48 the map (£,£(8) » (£,0), fex £€0, (2
ot s the map (€,00 1 (E,£E)), fer E€D. (D)
We also have
n -1 ,
ade(O) o (Dox(o}). %)
(4L) DO 44 starlike with nespect to 0, and
8271 0) ¢ 9, € 8 7M. (5)
=d
9
(Lid) The folluwing estimates hold whenever g € 527B3(0),
whete 5 1= E(l"”’n-l)(i) = (El,...,g"'l):
ERPEEEE - I R — T e . - -
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af

(6)

(2) |grad f(E)In_1 <

—_———, 45 € #0; (7)

1- %-azrga(ﬁ) P
lgrad £(£)]| <8 ar’(g); (8) t’
g n-1 =7 2%tV -

(3] 4§ ¢éer, |e] =1, and éoen = 0, <zthen

(g)ee| :_§-ar0(€); (9)

(4) [£@)] = [e-r )]

< argmy )

(10)

~ 121140
= alslu-l
< iré+u(£).

a/2
whete 3 = 3 a[ﬁg} ///Ql+u)i |

(5) lv,n(6)e grad ro(e)| < arg(s), 4§ ¢ #0, (1)

whene 3 ;= % (n-1)a+a;

() Ié!ﬂ_1 = r,(ny(e)) 2 % ro(2). (12)
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PROOF. (i) According to (VI.63], T : 3@BL(0) ~T,.(0) fis

0

injective, so n'l: HO(BQFBg(O)) - BQABZ(O) is defined: specifically,

0
1f y€ HO(aQﬂBg(O)), then there is a unique ¢ € 39033<0) for

n-1

1
hich = ] = (£,
whic y 0(€y) (Qy 1€y
(yl,...,yn'l,gg). Set

-1
,0), and we have HO (y) Ey

n-li

o= 7 F n .
Dy t= (£ €R (£,0) € 1 (397B5(0)) };

(1,...

the equality DO = = ’n-l)(SQ"Bg(O)) clearly holds. Define

f: DO - R accerding to

£(8) := (Eal)n(é,o), for each EED,.

1l n-1

Now, if £ € agﬁsg(O), and we set £ := (£7,...,8" ), then 1,(¢) =

(£.0), so Ee€Dy, and ¢ =110 = (&, (mgHE0) =
(¢,£(£)). On the other hand, if £ = (£,£({)) for some ¢ € O,
then (£,0) € N (3"B}(0)) and 171(E,0) = (2,(T;H7¢E,00) =
(£,£(2)) = £, showing that ¢ € SQ’“BE(O). Thus, (1) is correct.

Statements (2), (3), and (4) are sufficiently clear.

To complete the'proof of (i), we must show that D

0
n-1

1 contains O €T .

tn R"!, and fecl(vo) (obviously, D

0
since BQﬁBg(O) contains 0 € R"). Then, select ¢ € DO’ and se

£ := Hal(E,O) = (£,£(3)). Let U, be an open neighborhood of &

&
m?, and @5 € Cl(UE), with grad ®€(y) $#0 for y€ (., 3V

€ - A = € 1.
{y ugl ¢£(y) 0}, and U, {y Ua' @E(y) < 0}. Set

§

ﬁ€ 1= UgﬁB:(O) and EE 1= ®£| ﬁg: ﬁE is an open neighborhood of

£ in R", & Ecl(ﬁa), 230, = {y € Bl 3. = 01, and

13 g

t

is open

in
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Qwu, = {y € ﬁgl 5£(y) < 0}. Observe also that Voo (2) =

grad 5,(5)/{grad ég(i)‘n. Let us show that ¢

E,n(g) # 0: we have

s = A =y 1 n = e ! R
vs,n(i) |grad ¢5(»);nvag(i) |grad '5<€)‘nvaﬁ(£)°Jaﬁ(o)’

and

1 2 1 2 2a,, 1 2.2a
Vag(E)ev o (0) = 1'5"v39(5)'v39(0){n 21- 3 a7 (8) > 1- 5 a'd

2 > 0,

since ad® < 1/2. Thus, 55 n(&) > 0. Consequently, by the Implicit

Function Theorem (VI.2] (and its proof), there exist an open neighbor-

hood ﬁgo c ﬁi of & in 'Rn, an open neighborhood Vé of £ in
'm"'l, and a unique function ¢€ € Cl(Vé) such that

{yegu Eé(y) =0l ={yerY §:=Gh...y"Hevy

zol £

n ~
y = ¢€(y)}.

~ -

cu U
Clearly, since UCO li’ INU

now that Vé = DO and

(‘z,¢-g<2)) €E{yevy

= {y€vu 5£(y) = 0}, We claim

EOI
= f| Vé: first, if 2z € Vé, then

£0

¢
Eg(y) = 0} = 3970, , C 327B5(0), whence

50‘ £0
- - o ~ph . . -

(2.0) Ho(z,¢€(z)) € Ho(aﬁ Bd(O)), this says that z € DO'

Moreover, since (i,tg(i)) = nal(i,O), we also find that ¢£(i) =

(Hal)n(%,O) = f(z). The claim is now verified, and we can assert

that each £ € DO possesses an open neighborhood Vé c DO such

that fi Vé € Cl(Vé). This shows at once that DO is open in

n-1

R and f € CI(DO), completing the proof of (i).

We shall deviate here from the order in which the conclusions

of the lemma are stated, proving now (ii{.1-3):
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(1i1i.1) (This has essentially already been shown, in the

) = e(n)’
n

proof of (i).) Let £ € aQﬂBg(O). Recalling that Voo

[Red a,.
and !vag(i)-an(O)In < a[&-O[n = aro(;), and noting that

[an(E)-an(O)Ii = 2-2v,()ev,(0), we find

n
Van(8) = via(8)ev o (0)

2
1- 3 |vg(9=v |

Iv

1 a’r, (g)

_ 1

2

1l 22
)
_ 1 2 .2a

> 1 3 ad

v
00|~

since ad® < 1/2. ;

(i1i.2) Choose ¢ € ast:(O). By (i), £ € G(f), so

£ = (é,f(é)), where £ = (El,...,sn-l), and it is clear that

1 : z
('le(Q);'"!°Dn-lf(é)’l)9 (13)

v..(3) =
30 /{1+|grad f(é)linl} :
since 227B}(0) = {y € DpR| Y-t .. y" ) = 0}, while

(n)

212 n -2
! =
n In particular, 1l+|grad f(C)ln_1 {an(E)} . Use

an(O) = e

of (iii.l) yields

n 2
| .2 1-{an(€)}
grad £, ) =~ 7 |
{an(i)}
2 2a 1 4 4a
a'ry (g)- 727, £

<
1 2 2a 2
{1- 33, (&)}




L 2 2a, . [ arg(® \12
’{I‘Za‘o(g)"i 1 220,[
, l—-z-a T, ()

) { ary (¢) }2
- 1 2 2a '

1~ 781, (€)

Now, if & # 0, 4.e., if rO(E) > 0, then the latter inequality

is strict, so (7) follows. Likewise, (8) follows from the inequality

immediately above, upon noting that 1- % azrga(ﬁ) > 7/8.

(iii.3) Let ¢ €R", with 1é}n =1 and é-er(l“) = 0,
{i.e., " =0. For t€ SQWB:(O), we have, from (13), with
E= el h,
R 1 n-1 . s
an(E)'E - - : 2 Djf(g)-ej,

M+lgrad £ 12 3 gm

from which, with the Cauchy-Schwarz inequality and (8), there
follows

. n-1 R th a 8 «a
tviq8)eel < jgl DyE(E) &) < lgrad £(8)] _; < 5 ary(o).

(11) Since Do = z(Lseee

(0) 1is plain. Note that, if £ € DO and ¢ := ({,f(£)),

’n-l)(BQﬁBg(O)), the inclusion

n-1
Do € B4

then ¢ € 80“32(0), and so (8) gives

vy

|grad f(i){n_l < % arg(ﬁ) < % ad™ < % . (14)

Select any & € R™! with |8, =1, -.define () CR by
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(¢) = {g >0 ¢ée Dyt

Since DO is an open neighborhood of 0 in Rn-l, and DO c

32-1(0), (Z) is non-void, open, contained in (0,d), and contains
(0,3' for some ¢’ > 0. We shall prove that, in fact, (¢) =

(O,Ce) for some CE > % d; this will clearly imply that DO is

starlike with respect to O, and also that Bg-l(O) C Do, whence
’ - d

9
the proof of (ii) shall have been completed. To see, then, that our
claim is correct, we begin by appealing to the basic structure
theorem for open subsets of R (cf., ¢.g., Hewitt and Stromberg [20],

Theorem (6.59)), according to which there exists a countable set I,

which we can take to be W or ({1,...,N} for some N €N, and two

sets {cii i € 1} and {Ci[ i € I} in R such that ci =0,
1 2 2 1l
Ly <& 2 d for each { €1, 8 St for each 1 € I such that
a 1l 2 . 1 ’2

i+l € I, and (&) = UiGI (ci,ci), note that the &y and y
i € I, are not in (€). We wish to show that I = {1} and
2 7 a
%39 d. Define Fé: (e) * R by

Fé(c) 1= £(g€) for each g € (é).
Since (Cé,f(cE)) € B:(O), we have cz+{FE(C)}2 = |Cé|§_1+:f(;é)§2 <
dz, (Y}

/r 2 2 3
{Fé(C)( < v{d%-g"}, whenever ¢ € (&), (15)

The inclusion f € CI(UO) implies that Fé € Cl((é)): clearly,

Fi(2) = fe grad £(zé),  for each ¢ € (¢). (16)
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Using (14), we conclude that ]Fél < 4/7 on (€). For each i€ I,
the mean-value theorem shows that Fél (ci,;i) is then uniformly !

1+ 2-
continuous, and so Fé(;i ) = lim FE(;) and Fé(;i )

1+
C"Ci
lim FE(C) exist. Letting ¢ - ci- in the inequality
2-
t+3
;2+{Fé(;)}2 < dz, there results J
2,2 2-.,2 2
() "+{Fa (g )} < d”. (17)

Suppose that strict inequality holds in (17): then (;ié,?;(ci-)) € '

o 2 . 2

i) i=1 be a sequence in (0,c1) converging to ;1.
c & = = ".n

Then the sequence ((gie,Fé(;i)))i_l C G(f) BQ.Bd(O) converges

32(0). Let (g,)
to (Czé F:(;z-)) S0 (;25 F:(;z-)) € 30 since 230 is closed.
17 ¢*"1 ’ 1777 ¢*’1 - ’
2z ., 2~ = 2: L. 2-0y o

Thus, (;ls,Fé(cl )) € BQ.Bd(O), giving Ho(cle,Fé(él D)

2z , 2

g € € DO' But this says that ¢, €
(¢), which is false. Consequently, equality must hold in (17):

(;ié,O) and so implying that

2.2 .. 02002 2
(cl) +1Fé(§l )} a. (18)

Note that, since Fé(ci+) = Fé(0+) = £(0) = 0, we have, applying
the mean-value theorem to the continuous extension of Fé| (0,;%)
2 2- 2- + oy L2 .
2 = F2(C . = F! . €
to [0,41]. Fe(cl ) Fe(u,1 ) FE(O ) Fe(;) Z1» for some
2 . 2- 2
(0,;1). Since |FE| < 4/7, we obtain |Fé(c1 Y| < /) Ly, so,

from (18),

a = DM ) < Zrsqesio) = deesn. 9

Now, suppose that I D {1,2}, so there exist C;, cg with
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Ci :_C; < cg < d and (c;,cg) C (€). By retracing the reasoning used

above, mutatis mutandis, we conclude that

1+
2

2 _ 2

(c%)zﬂré(c )} d’. (20)

From (20) and (15), for ¢ > cé and 7 € (2),
1+ 2 1.2 2 2 ) ,
[Fa(zy )| = V18- %) > Ya®=¢%) > [Fa(0) . (21)

Now, supposing that g; < g < cg, we may again apply the mean-value

1
theorem to assert that there exists some € (CZ,C) such that

)

Fi(eg) |- (e=tp) = [F2(e30)-F(0) |

fv

1 1+ N
P20 -[F2(@ ||

1+
IAGHINIAGY

v

Ad% - vty

the second equality follows from (21), the second inequality from
(20) and (15). Applying the mean-value theorem to the function
s b /{dz-sz} on the interval [;;,;] (recalling that ¢ < d),

we can write, for some ¢° € (;;,C),

Fi(eg) |- (g-2) > ViaP-(eD1-vial-c?)

C0

B (C‘Cl)
/1a2-(c% %) 2
[

> & (o)
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1
g
2 1
>d (Q-CZ).
Consequently,
1 [] 4
g, < ]FE(CO) d < 54, i
so
A
2 1 4
5y 28y < ¥ d. (22) j
Combining (19) and (22), we arrive at the impossibility
|
65 2 /65 4 36 S
d<7;1<7-7d<79-d<d. ,
Thus, we must have I = {1}, so (&) = (O,;i). Further, (19) gives
|
2 7 7
V%549

As noted, statement (ii) follows.

(11i.4) Let £ € 30™BJ(0). Then & := ¢t ... e hep

and € = (£,£(8)) = HSI(E,O), S0
n -l.a. . 2
te-mpe) [, = 171 = 1D &, 0] = £,

giving the first equality of (10). Note also that

2 2 212 - 212
ro(e) = le| = 1E]__ +£@®]" > |&] ;. (23)
Now, since f£(0) = 0, (10) clearly holds if ¢ = 0, so we may
suppose that £ # 0 (so £ $# 0, as well).
Choose any non-zero 2z € Uo: UO is starlike with respect to
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0, so sz € DO whenever 0 < s < 1, showing that we can define

Gi: [0,1] R by
Gi(s) i £(sz), for each s € [0,1].
£ € Cl(DO) and DO is open, so Gé € Cl([0,1]), with

Gé(s) = grad f(sz)ez, for 0 <s < 1.

. N

Gé(O) = £(0) = 0, and we can write

1 1
f(z) = Gé(l)-Gé(O) = J Gé dkl = J grad f(sz)ez d>l(s). (24) E
0 0

The estimate Igrad f,n-l < 4/7, following from (8), produces,

with (24),
1
. - - 4 -
[£(2)] < [ |grad f(sz),n~1'fz]n—l dAl(s) <3 ‘z!n-l' (25)
0

Re-applying (24) (with 2z = £) and (8), and using (25),

1
e < | lgrad eGeD| - 18],y @ o)
0
1
<%ail f | (s€,£(sE)) |2 ar, (s)
0
1
: i\ 12,0/2
-8 algl f ([s8]2_+l£(s®)] e/ dx, (s) - ;
0
1
, 6, ;2 /2 .
<3 aitl oy I {ls€l§-1+ r lss‘n—l}a/ diy (s)
0
8 (657 1w [
"3 [Z‘j aleli ) f s di,(s)
0 g




L8 (65%7 ik
7(1+a) {49] =lp-1
Since ré,n-l = lﬂo(ﬁ)ln = ry(Fy(8)), and ,égn—l < 1y(&), the proof

of (10) is complete.

(111.5) 1If ¢ € aQﬁBg(O), £#0, and £ := (£°,...,e0 ),

then

n-1 k n .
k . E n F) e i '
v q(8) ® grad rg()] kgl V3 ()" TeT- PP i

n-1 -
)
ENNOITE s
k=1 % &l

< (n-1)- %a-rg(c)ﬂirg(i)

|A

= éfg(i),

by (9) and (10), having noted that En = f(£) and ig[n = ro(g).

Thus, inequality (1l1) is correct.

(111.6) Again with £ € aQnBE(O) and £ = (£7,...,e" ),

we have [éli

A

1" ,Cli‘ff(é)lz, while (25) gives [f(%)| <

4 0; : 2_16 ;2

7 |€|n-l' Thus, lgln-l > IEIn %9 Igln-l' which leads to
- 7

1€l .y 25 [&l . which is just (12). o.

[VI.65] REMARK. Let us bring out several other facts
concerning the setting of the preceding lemma: retain the notation
introduced there. First, choose { = (El,...,gn-l) € DO and consider

the line segment {(£,s)| s > f(é)}”B:(O): this segment is
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connected and does not meet 30, by (VI.64.1), so it either lies
in  or is contained in Q-'. We shall show that, in fact, there

are points of the line segment in Q-', whence it shall follow that

((E,8)] s> f(é)}*Bg(O) ceo ', (1)

by the preceding observation. Then, setting £ := (é,f(é)) € 23Q,

let Ug CR" be an open neighborhood of £, and °£ € Cl(Ug)

such that grad ¢€(x) # 0 for each x € U 3arU, = {x € UEI

= U = ey -'v.
¢E(x) 0}, and Q"UE {x bgi ¢£(x) < 0}, so @ ﬁLi
{x € Ugl ®€(x) > 0}. Then an(E) = grad ®£(£)/lgrad Qg(g)}n, so,

i using (VI.64.1ii.1],

D0, (§) = grad ¢€(g).e§“)
- Jarad 5 (8)] vyo()ee™
> & lerad o @
> 0

since °€(£) = 0 and DnQE is continuous on UE' we may assert
that ¢€(£+se§n)) > 0 for all sufficiently small positive s, so
also (E,f(é)+s) = E+se§n) € o~ for all sufficiently small
positive s. As noted, this implies that (1) is true. Reasoning

in a similar manner, we can also deduce that

{(E,9)] s < £()1B}0) < 7, (2) .

whenever é € DO' In turn, from (1) and (2), it is easy to see that




—

~14Q-
if €€ 33(0) with (g1,... " e Dy» then
ceo”  ief €8> et h,
(3)
£E€Q A TG
n-1 ‘ %

(and, of course, £ € 30 iff " = f(El,.--,E .

The more general statement in which we are interested can

now be proven.

[VI.66] PROPOSITION. Llet &CR™ bea Lyapuncy demaii,
and (a,a,d) a set of Lyapunov constants for Q. Llet x € 30, .

Recall the nctations established 4n ([VI.62].

(4] Degine h_: 89-“Bz(x)*]Rn-l by

Then hx(BQﬁB:(x)) 44 an open nedghbcewiced ¢ 0

in ]Rn'l, which 48 starlike with nespect to 0 and

such that

n-1 n-1
7

T8 n
7 d(0) < hx(aﬂle(X)) c B, (0. i
9 .

B

(44) (amB:(x),hx) is a coordinate system in 3. We

have
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b= nttedCt n Gaoeleon), ) (1)
4
-1 -1 -1 . ~al .
Jhx = {"anohx Ovan(x)} . in hx(BQ Bd(x)). (2) i
and
-1
I < V2 J (3) :
1
(Al) The gollowing estimates hold for each ¢ € amag(x): /
.. j
(1) vyg@ev, (0 > 1- 3 ae2%(9) > 1- 2 %% > 10 (o
S ) ) , .
[2) 4§ €€ TBQ(X) with lc}n =1, Znen E
vy ()ee] < $ arl(e); (5)
(3) le-n (1, < s a ) < &xe, ®) B

: C!./Z
; where a := g-a[ggJ ///21+a);

(4) [y o(8)e grad r ()] < arj(8), 4§ &+#x, (D
;.. 8 -
where & := 3 (n-1)a+a;

(5] Fx (&) < x (M () < (5). (8)

PROOF. We shall use here the notations and results of {VI.62].

We showed that ﬂ;(n) is a Lyapunov domain, 0 = Hg(x) € a{ﬂg(s 3,

\ - n n _ = (1)
_ Tar ()¢ = LEERT 7 =0}, and Ya (@@ T &

Consequently, Lemma [VI.64] can be applied to ﬂ%(ﬁ). Note that

(a,2,d) 1is a set of Lyapunov constants for K;(R). We denote by

LA the orthogonal projection map ¢§ i~ (Sl,...,in-l,O) on R® onto
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- v o g n . -
Ta{Kx(ﬁ)}(O)’ and 1O . "OI O{KX(Q) }’\Bd(O) H TTx and A.x have

their meanings as established in [VI.62]. ,

(i) Let us observe first that

n

fomrx = ﬂooJ(x on R . (9)
n A
! For, suppose that £ € R : then, on the one hand, nooﬂ¥(i) = 1
 J
(ﬂl(i),...,ﬂn-l(i).o). Since n_(g) € x+T. _(x), (VI.62.18) gives
X b4 x N
c - = i n :
ﬂi(ﬂx(;)) 0, while (VI.62.17) says that MiOnx ﬂi on R, i
for each i € {1,...,n-1}. Thus, on the other hand, ﬂgcrx §) = i
-1 R S | . 2
acor_(£),..., 30 Lor_(£),00 = GC(E),... 371(£),0). This proves »
Y n = n '
(9). Next, because K&(BQ Bd(x)) 3{1;(9)}”Bd(0), and RO is
defined on the latter set, it is easy to see that (9) implies
n
= ¥ 2
Kxonx ﬂoo(?;l Y Bd(x)), (10) a
which gives directly i
by =(1,...,n-1) n
x&onx = = o(ﬂ¥| BQﬁBd(x)). (1D

If we define, as in the statement of the proposition, hx := % oR_, }

then (11) shows that

(1,...4n-1) n |
(ﬂ;(BQQBd(x)))

2" n - =
hx(c"”Bd(x)) z
(12)

(1,...,n-1)

n -
(a(ﬂ;(ﬂ)}ﬁBd(O)),

according to Lemma [VI.64], the latter set is an open neighborhood

of 0 1in 'm"'l, which is starlike with respect to 0, contains
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B;-I(O), and is contained in BS(O). Statement (i) is proven.
d
9

(ii) Obviously, BQﬁB:(x) is relatively open in 35; we
must show that h_ is a coordinate function for BQ“BZ(x). Now,
Hx is continuous, since L. is continuous, and Hx is injective
by [VI.63]; i; is also continuous and injective (cf., [VI.62.iv]),
whence it follows that hx possesses these properties, as well.

We have shown in (i) that hx(aﬂfBg(x)) is open in :m“'l. The

o

; -1 =1 o= Al . .
equality hx = Hx oGK# hx(aﬂle(x))) is plain enough, from the

definition hx c= ixonx' We claim that we also have

i TR G I~ : n
hx &) ﬂ; oHO £.0), for each £ € hx(ag‘Bd(x)). (13)

To prove (13), let £ € h (320Bj(x)) =X ol (327B3(x)), so (£,0) €
n n =1 -1,z . ,
xgonx(anrnd(x)) = Hooxx(BQWBd(x)), and M& ono (£,0) is defined.

Moreover, from (1l),

~1 =1, - o =(1,e00,n-1) o0 -1 -1 2
hx(MQ ono (£,0)) = = oN#(di Oﬂo (£,0))

(1,...,n-1)

(gt eE,0) = &

n n o
Also, if ¢ € BQﬁBd(x), then (hx(E),O) € K;oﬁx(aﬂﬁBd(x)) = o]

node(an'Bg(x)), so we can compute, using (VI.62.18) and (10),

wl 1,
x

-1 -1 -1 -
Oﬁo (hx(i).O) = ﬂ; HO (ﬂgoﬂx(i).o)

-1 _-1 - o
= ﬁ; ono (M;o“x(g))

-1 -1
- m; ono (nooﬂ;(z)) = £,
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We conclude that (13) does indeed hold. By Lemma [VI.64], we can

write 381(5,0) = (é,(nal)“(é,O)) for £ € hx(amﬁg(x)), and

we know that the function £ (nal)“(é,O) is in Cl(hx('&Q’WBg(x)));

as in [VI.64], we call this function f. Thus, with (13),

b N = KCHE(MTHE,0),  for each £ €h (32BI()). (1)

1

Clearly, (14) implies that h; € cl(hx(ams’;(x));m“); in particular,

- P .| n gD
hx 1s continuous, soO hx: oQ"Bd(x) - hx(oQﬁBd(x)) is a homeo-
morphism. To prove that h = 1is a coordinate function for ES‘.’WBS(X),

we now need demonstrate only that Jh;l >0 on hx(amB:(x)): |

letting £ € hx(aQ'\Bg(x)), we find, from (14), .
phol(8) = (0}C(F,(£))}oDF,(8) = AZToDF, (£)
X x 0 0 X 0] ’

where Ax: ]Rn -»IRn is the linear isometry introduced in ([VI.62.iii],

and F. € cl(hx(anrsg(x));n“) is just the map z |~ nal(i,O) -

0
(',(Hal)n(i,O)) = (2,£(2)), the latter in the notation of [VI.62].

The nx(n-l1l) matrix of DFO(E) with respect to the standard basis

vectors of R" and ]Rn'-1 is just

(1 0 . 0 ]
0 1 . 0
0 0 1
£,8) £, ... £ (@)

so




1

-1 N -
(h. 1), (3 = Dh

(&)e1
= A-l
X

(n)

n ), for each i€ {1,...,n-1}.

,

+f,i(€)e

Now, because A;l is a linear isometry, it follows from an exercise

aprearing in Fleming {15}, p. 309, that

/
n-1 -1 n-1
=1 A yil iR yi{
whenever {yi}g:i cR". Consequently, g
wio - | wh, b L
x i=1 x 7’4 ;
n-1 1
- -1, (n) 2y () *
iél A, (ei +f,i(E)en )l
n-1
(n) 2y (n)
= 1Q1 (e1 +f.i(5)en )’ (15)
n-1 L2
= /{1+ ) (f,i(é)) }
i=1

{1+ grad f(é)li_l},

the penultimate equality resulting from a simple computation.
Clearly, (15) shows that Jh;l(é) > 0, which completes the proof

of the assertion that (aQ“B:(x),hx) is a coordinate system in 20.

To verify the representation (2), again choose a point

£ € hx(BQﬁB:(x)): because f € Cl(hx(EQﬂB:(x))) and !

3K _(2))rB3(0) = ((2,£(2))] £ € h (30MBI(x))},
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. . (n) )
with the equality va{ﬂg(g)}(O) e, it is easy to see that

(£, 8,00t 1 (D),1)

-1,
v, (171 (£,0)) =

Thus, using the inner-product-preserving property of Ax’ (13,

I ¢:))
(VI.62.12), and the fact that Axan(x) e, s

-1 N -1-
vag(hx (5))-v39(x) Axvm(hx (S))-Axvag(x)

(n)

n

-1,-
= “a{xx(n)}(""xmx (8)))ee

n -1 .
" Vag (@) o (400

1
/{1+|grad £(8)]2_))

Upon comparing this result with (15), it becomes evident that (2)

must hold.

To secure the estimate (3), simply use (15) in conjunctica.

with (VI.64.8), setting £ := (é,f(é)), and noting that ad® <
1/2:
-1,- 64 2 2a 64 2.2 16
-7hx (5)1/{1+@ar0 (E)}< /{1+Ead }</{1+-5}< V2 . ;

With this, (ii) is proven.

Throughout the following proofs of (iii.1-5), ¢ 1is a point
of BQ“B:(x), so ﬂ;(i) € a{ﬂ;(Q)}ﬁBg(O). Each statement follows

from a corresponding estimate derived in Lemma [VI.64) (applied to
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M;(Q), recalling that (a,a,d) is a set of Lyapunov constants for

Xg(Q), as well as for Q).

(iii.1) From [VI.64.iii.l],

(n) _1 .2 2a 1 a2d2u 5

Vs ) F (Ve 2 10 g eI OG() > 1 g . (16)

oof~y

(n)
but va{xx(g)}(xx(g)).en = va{xx(g)}(KX(E)).Va{Kx(Q)}(IX(X))

AVvyo(8)eA v (x) = v (E)ev o(x) (by (VI.62.12) and the fact that
i i y = N - l =
A, is a linear isometry), while rO(H¥(g)) [K#(S) K;(x),n

IS-xIn (since ﬂ; is an isometry). Thus, (4) results from (16).

. : e - = ! N -
(111.2) Let € € T o(x), with leln 1. Then [AE| =1,
(n)

and Axcoen = AxeoAvaQ(x) = ecvan(x) = 0, showing that we may

apply ([VI.64.iii.3]:

- 8§ o
l“a{M¥(:)}(w§(§))'Ax5‘ < 5 arg (0 (8). (17)
Since Vaiﬂ;(ﬂ)}(mk(:)).Axg = AxVaQ(g)'Axé - vaﬁ(g)'e’ and
r0(1¥(£)) = rx(E), (5) follows from (17).
(i11.3) According to [VI.64.1i1.4], we have the estimate
. ~_1+a -~ 140
IMx(E)—ﬂo(x¥(;))|n < arg (HO(N¥(S))) 2 ary (ﬂ;(i)),

which can be written

-~ l4a
ar, (M¥(Hx(5)))

I’ () (]

[ES
A

aré*" (% (5)), (18)
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upon recalling (10). (6) follows from (18), by the isometric

property of Kx’ and the equality M;(x) = 0.

(iii.4) Suppose that £ # x. Then H;(&) ¥ 0, so

{Vi.64.1ii.5] implies that
- Q
fva{x;(g)}cx¥(a>>. grad ry (3 (6)) | < drg(C (£)).

Now,

K A (50 -
8rad ro(Kx(Q)) - fo(‘.’(x(i)) = rx(a) = Ax ;x(—g)_ = AX grad rx(S)’

so the left-hand side of (19) is just [Axan(g)OAx grad r_(2)| =

|VEQ(5)- grad r (£)|. Clearly, (11) then follows from (19).

£ l 7 |4
(ii1.5) From [VI.64.1i1.6], ro(ﬂo(ﬂg(g))) 2 g T (),
but 1y (1,(K (5))) = roéﬂ¥(3x(£))) = r, (1.(8), and r (¥ (3)) =
r (£), whence the first inequality in (8) follows. The second

inequality is obvious. a.

Pogorzelski [42] cites a fact which is quite convenient to
have available when estimating various integrals over the boundary
of a Lvapunov domain. We shall formulate and prove the pertinent

statement here.

(VI.67] LEMMA. Llet @ be a Lyapuncy domain in R". Llet

lleLent and

LV

a>0 and a € (0,1] be, respectively, a Holder coey

Holder exponent gon Vg {.e., such that

(19)
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a .
| wheieven Y0 ¥y € 3.

I -
Ve v D = alyymyy iy

Then there exi{sts a posditive numbern d depending only on a

0'
and a, 4uch that for each d € (o,do) there exists a vq € (0,1),

depending only on a, a, and d, pessessding the follewing

property:

whieitever x € 3@, and then z € {x+svaﬂ(x)l
SE€ER} and ¢ € amsg(x):‘-{z}' ane chosen,

the inequalities :

1 (1) o

chbtain.

PROOTF. Let d > 0 with ad® < 1/2 (so (a,a,d) 1is a set of
Lyapunov constants for Q). Select x € 3}, then z € {x+5vaﬁ(x)]

s €ER}, then £ € aQﬁBg(x)ﬁ{z}'. Observe that rz(Rx(i)) > 0, for,
if z = nx(e). then 2z € x+TaQ(x), so ~"-x € Nag(x)”Taﬂ(x), which
implies that 2z = x; thus, Hx(ﬁ) =x, so £ =x (since Hx

is injective, and nx(x) = x), and we arrive at the equality

§ = z, contradicting the hypothesis on £, and proving the claim.

Next, since 2z-x € Nan(x) and Hx(g)-x € Tag(x), it is clear that

£, (7 () = Mrio+rd(n (8)) 2 £ (1 (6)). ()

Similarly, because E-Ex(i) € N, (x) (cf., (VI.62.3)), .

1]

r 2., 2 3 > To(c
£ (8) = Vg (G ()4 (M ()} 2 1, G (). (3




Proceeding to the main line of reasoning of the proof, first use

(VI.66.1iii.3] to write
|7, (-, ()] < 1 (n(e)) < ar ™, (),

from which there follows

st ) o A, (6))
L a ey oy M T ey “
note that a > 0 and depends only on a and «. With the
inequality (2), rz(ﬁx(i)) 3_rx(ﬂx(£)), (4) implies that
l-éri(nx(i)) < ;;;%£§%33-< 1+iri(nx(€)).
and then, because rx(Hx(s)) < rx(z) < d,
1-ad® < AN 1+ad°. (5)

rz(ﬂx(i))
Now, simply choose do > 0 such that max {2adg. édg} <1, and
suppose d € (O,do); since ad® < 1/2, (5) holds. Set

1-ad”.

Y4

Since 0 < ad* < 1, € (0,1), and 1-(ad™% <1, so

Yd
1+3d°% < 1/(1-3d%) = l/Yd. Consequently, (1) follows directly from
(5), with Yq as defined. Obviously, d,; depends only on a and

a, while depends only on a, a, and d. 0.

Y4
The following auxiliary construction is used in conjunction

with the divergence theorem to derive representations of solutions

of Maxwell's equations in Part III.
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[VI.68] LEMMA. Let Q be a non-vedd pacper subset ¢f R"
which 48 a q-hegular domain for some q > 2, and such that a0 i
48 compact. Fca each € €R, Let the function G°: 3q +R"
be defined by
. ’
G (x) := x+Ean(x) fon each X € 30, (1) }
y
and set : ;
9, = {x € ol dist (x,39) > -¢} 8 € <0, (2)
9, i~ {x € Q7" dist (x,30) > e} 4if > 0. (3) i
]
Then there exists an ey > 0 such that whenever 0 < el < €y’ !
({} 6% 4is a (q-1)-imbedding, taking aq ontc 3.,
(<L) Qs 48 a  (q-1)-regular domain, . ;
and
(4d) v = -ggn € *v o(GE)-l on A .
396 R €
Funthen,
({vl  1im  JG° = 1 unifermly on  3Q.
e >0

PROOF. We note at the outset that  1is a Lyapunov domain
(by Remark [VI.61.b]), v, € 9 laam™  ([VI.57]), and

v is Lipschitz continuous (([VI.26]). In particular, we can

1]

find a set of Lvapunov constants for Q& of the form (a,l,d).
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(1) First, for any real e it is easy to see that Gt €

Cq-l(BQan), for, choosing a covering collection {(Ul,hl)}1€I

of coordinate systems in 3R, so h:l € Cq(hl(U‘)ﬂRn) for each

1 € I, we have

e -1 -1 -1
G oh ~ = h “4ecv. ooh on h1(U1)’ (&)

so Gonle Cq-l(hl(Ul)ﬂRn) for each 1 € I, since v, . is in

Cq-l(aBﬂRn). This implies that the claim is true. Observe also

that G° is continuous for any «¢.

Suppose now that 'el < a-lz then Gt is an injection.
Indeed, let X1s X, € 3¢, with Ge(xl) = Ge(xz), {.e.,

x +ean(xl) = x2+ev Then

1 (%) -

-xl!n’

|x2~-xl|n = |sl-|vaﬂ(x2)-vag(x1)!n < ar s!-!xz
which can hold only if X = Xy, since aje| < 1. This proves

our assertion. But now, for these same ¢, GE: 3~ GE(BQ) is
a continuous bijection, and 3Q 1is compact, whence the map is a

homeomorphism.

To show that G° is a (q-1)-imbedding whenever |z| is
sufficiently small, we must verify now only that 6% has rank n-1
at each point of 30, or, equivalently, that JG5 >0 on 30
whenever |e| is sufficiently small. Clearly, the latter shall
follow once (iv) has been established. To prove (iv), we begin by
pointing out that we can assume that the covering collection

{(U\’h\)}161 of coordinate systems in 323G has been chosen so that
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I is finite, and, for each 1 € I, all partial derivatives of

-1 -1 .

h1 and anOh1 are bounded on hI(Ul)’ while
l(h:l),lA...A(hzl),n_ll is bounded below by a positive number on
hl(U‘),' a consequence of the compactness of 32 and the properties
of coordinate systems. Then, from (4), it is clear that, for,

say, Je| <1,

n-1 ¢ 1 n-1 1
A - A - . y
A% (G7oh ), | < 1A (h 7Y,y [+, le| on h (L)
for each 1 € I, for certain positive numbers {ML}IEI' Using
(VI.24.3), it follows that
JGE| U < 1+M;-]e| for each 1 €1,

for certain positive numbers {M;} Assertion (iv) surely

1€1°
follows from (5), since I is finite. As remarked, we have now
proven that G- is a (q-1)-imbedding if |e| is sufficiently

small; among other consequences of [VI.30], we now know that

G5(30) is a compact (n-l,n:;g~l)-manifold for these same «¢.
We shall next prove that, for |e| sufficiently small,
G5(30) = {y€ Q™'| dist (y,30) =€}, if ¢ >0,
whereas
GE(50) = {y € | dist (y,30) = -}, if e < 0.

For this, we first appeal to ([VI.59), which tells us that there

exists a positive 6, for which

(3

(&)

(7
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-
x+san(x) €9 if 0 < s < GQ, (8)
and for each x € 3.

x+svag(x) € Q if -GQ <s <0 (9)

Now, suppose first that 0 < ¢ < min {69, d/2, 1/2a}, with a
(> a) given in [VI.66.111.4]: we shall prove that (6) holds
thereby. If we assume that y € and dist (y,39) = ¢, then
there exists X, € 3Q such that |y-xy|n = ¢ and y=x, € NaQ(xy)
(cf., [VI.33]), whence y is given by one of xy+evag(xy),
xy-evaﬂ(xy); y cannot equal the latter, for otherwise we should

have y € Q, by (9). Thus, y = xy+cvaﬁ(xy) = Ge(xy). To secure

the opposite inclusion, choose any x € 30. Then GE(x) = x+eva£(x) €

2 , by (8). We must show also that

§ := dist (G5(x),3q) := inf |Ge(x)-z|n =c. (10)
z € 30

Since lGe(x)-x!n = ¢, the inequality & < ¢ 1s plainly true.
It is just as clear that & > O. Suppose that 6 < g: then
GS(x) = i+6van(i) for some X € 3¢ with x # x, and

= Iévan(x)-evan(x)ln

< Ce=8)e fv o (R)=v (0 [

< (e-&)+ac- x-iln
1 ~
< (e-8)+ 3 !x-x]n.

yielding
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lx—iln < 2(e=8) <« 2e < d.

Thus, x € BQﬂB:(i) and x # X, allowing the application of

[VI.66.11i.4]), giving first

l“ag(x)' grad ri(x)[ < alx-x 0’

then

Ze-lx-iln-vag(x)o grad ri(x) > <2ae- x-i[i. (11)

We can write, further,

2 ~12 ~12, 2 -
§ |x+evaﬁ(x) xln = lx-x|n+e +2ev o (%) (x-X) i

[-1+]

2€-|x-i[nvag(x)o grad ri(x) +Ix-i|§ = 62—52,

and, now recalling that ¢ < 1/2a, (11) implies that

2

0 < (1-2&5)-{x—i[§ < Gz—e <0,

thch is impossible. Thus, § = ¢. This completes the proof of
(6), 1f ¢ 1is as specified. (7) can be verified in a similar

manner, for € < 0 and |e| sufficiently small.

Statement (i) will be completely proven once we have shown

that, for |e| sufficiently small,

i, = {y € Q'] dist (y,3R) = e}, 1f  €>0, (12)

and
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3 =y € Q] dist (y,30) = -e}, if e <0, (13)

which we shall do presently. Let us make some preliminary

observations: by the continuity of the map xi\» dist (x,32) on

n

R, we know that d:{st.1 ((n,»),3Q) 1is open, while

dist:.1 ([n,=),30) 1is closed in 'Rp, for each n > 0. Thus, since

0 'ndist™! ((e,®),00) if e >0, %

2 dist™ L ((-¢,=),30) if e <0,
each Qe is open. Moreover, the sets given by

{x € Q] dist (x,9%) > -e} if e < 0,

{x € Q7'| dist (x,30) > €} if €>0
must be closed; in fact, if ¢ < 0, one can easily show that

{x € 0] dist (x,30) > -e} = {x € 07| dist (x,30) > ~¢}
- -1
= Q Ndist = ([-¢,=),3Q),

with similar reasoning for ﬁs if ¢ > 0. We claim that

Q =0 whenever || is sufficiently small ?
[ € (14)

(and positive).
To see that this is so, suppose first that ¢ > 0: since ée is
closed and certainly contains Qe’ the inclusion G; c ﬁc must

hold. Now, assume that x € ﬁ:’ ie., x€0 " and dist (x,3%) >

e. If dist (x,3Q) > e, then x € QE - Q;, $0 we must examine only
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the possibility that dist (x,33%) := inf Ix-z!n = g: supposing
z € 3Q

that this holds, and that € 1is small enough, it is easy to see, as

before, that we must have x = G (X) = x+ev. (X) for some x € 3.

a2

Since it was shown that there is some ¢ > O such that
G'(30) = {y € Q-'I dist (y,3%) = n} for 0 <nc<eg,

if we select any sequence (ej);=1 C (0,=) with €, 0, and
assume that € < &, for all sufficiently large j we find that

ete
§+(€+ej)van(i) =G (k) € {yeqa "] dist (v,0) = e+e ) C o

€de
Since (G '.](:'c))”;‘1 converges to i+avag(i) = X, we can conclude
that x € 9; if € < €. Thus, (14) has been proven for the case
€ > 0. The consideration of the case € < 0 proceeds along similar
lines, and so we omit the details. Now, having (14) available,
(12) and (13) can be proven easily: if |e| 1is sufficiently small
and ¢ > 0, then
- =
3N = q NQ
€ €
=N’
€ €
= {x € "| dist (x,32) > e}N{x € Q' dist (x,37) < edn;

= {x € Q' dist (x,30Q) = ¢},
giving (12), while if € < 0, (13) follows in much the same fashion.

Since we can now state, by (6), (7), (12), and (13), that

G5 (1) = BQE for each non-zero ¢ with |e| sufficiently small,
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(i) has been verified.

(ii) Let us begin hereAby showing that Qe is a regularly
open set, provided lel is sufficiently small. We investigate first

the case in which ¢ > 0: we are to prove that

Q° =0 (15)

€ €

whenever € 1is sufficiently small. Recalling that Ce is open,

the inclusion Q;o 2 Qe is obvious. Now, let x € Q;o and choose

a positive 6 such that Bg(x) c Q;. If we can show that Bg(x) -
Qe’ then we shall have x € Qz = Qe’ completing the proof of (15).
Assume, then, that there exists some y € Bg(x)”Q;; this implies
that y € QZ’Q; = 396, hence, if € is sufficiently small, that
dist (7,30) = ¢, and y = §+evag(§) for some ¥y € 52. Note that,
again if € is sufficiently small; Q; = {x € 9™"| dist (x,3Q) > ¢}.

Now, certainly we can select n € (0,c) so that y-nan(§) €

Bg(x), but then
y-nvan(i) = §+(e-n)van(§) € {x € Q'] dist (x,3Q) = e-n},
implying that
y-nvo(y) € {x € R7'| dist (x,30) > €} = a_,

and so contradicting the inclusions y-nvag(§) € Bg(x) C ﬁ;. Thus,
1f e is sufficiently small, Bg(x)”ﬂé -8, 4., By C a_,
giving (15) for these same € > 0. The proof of (15), in case

€ <0 and |e| d1s sufficiently small, is similar.
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Now we know Qe to be regularly open, with (by (i))
BQC = GE(QQ) an (n-1l,n;q-1)-manifold, if |e| 4is small enough.
But we may therefore invoke [VI.55] to conclude that Qe is a

(q-1)-regular domain for these same ¢.

(i11) We suppose here that }el is so small that (i) and

(ii) hold. Choose any x € 3. We aim first to prove that
£
Taﬁ(x) TaQE(G (x)). (16)

Since each tangent space here is an (n-1l)~dimensional subspace of

R", (16) shall follow once the inclusion

€
TaQE(G (x)) € T o(x) 17

is known. To prove (17), let B € 'I'a‘2 (Gs(x)). Then there exist
€
§>0 and f € cl((-5,6) R with ¢5(=5,8) € s, vE(0) = GF(x),
and we'(O) = 3. We define y: (-6,8) +R" via
e-l €

y(o) = G oy (c) for la] < 8, (18)
and fv: (~5,8) » R" by setting

fv(c) 1= anOw(o) for Io‘ < 8. (19)
Let us assume, for the moment, that

¢l (=8,,8) € cl((-ao,ao)uan) for some  §, € (0,5]. (20)

Then, since ;((-60.60)) C 30 and ¢(0) = x, we see that

T eakioree — _ 3 R
ttaithieiiia it i




¥'(0) € T, (x). Further, since Q is a q-regular domain, reason-

1)
ing which is by now familiar allows us to assert that there
exist an open neighborhood of x in ‘Rp, Ux’ and a function

o, € Cq(Ux) such that grad ¢x(y) # 0 for each y € U, and

' vag(y) = |grad ¢x(y)i;1' grad @x(y) for each y € 370U . (21)

In view of the definition (19), (20) and (21) together imply that

fv is of class Cl on a neighborhood of 0. Therefore, we can
of! = i 2 = !

deduce that £ (0)+£'(0) = 0, since |fv(o)|n 1 for |o! <8,

; ! = N . . .
L.e., vag(x) fv(O) 0, whence fV(O) € TaQ(x). But, by writing {

we = G%oGt owc = Gecw = w+eanOw = W+Efv on (-£,8), (22)

we come to the desired result

B = 45 (0) = 4" (D)+eEL(0) € T, ().

aQ

This implies that (17) is correct; as remarked, (16) follows.

Of course, the preceding reasoning depends upon the validity
of (20) whenever |e] 1is sufficiently small, independently of the

X chosen in 3232. For this, observe first that, by (22),
Ve, (W) () = 0 for o] < s. (23) |

Making use of the g-regularity of 2 and the compactness of 3,
we can find a finite collection of open subsets of ‘Rn, {Ui}§=1’
which covers =32, and a corresponding collection of functions

{01 € Cq(Ui)}isl such that, for each i € {1,...,p}, v
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mif_lgrad oilnf_Mi on Uy (24)
lei’jklimi om U, for j,k = 1,...,n, (25)
for certain positive numbers my and Mi’ and
' -1
vaﬂ(y) = |grad ¢i(y)|n grad oi(y), for each y € anmui. (26)
As a further restriction on ¢, because of (24) and (25), we may,
and shall, suppose Iel to be so small that
[ o .
. - Ao
det Sjk+s TE;;E*%—T (y)] >0 for each y € && Ui’
{ i'n "«
(27

for each 1€ {1,...,pl.

Now choose % € {1,...,p} such that x € U,» and define a function
F: Ux(-§,6) *R" by

grad ¢ (y)

F(y,0) := y+c Tgrad ¢E(y)T;'-

N for yE€U el < &. (28)

E’
It is clear that F € Cl(UZX(-G,S)ﬂRn) (recalling we €
ct((-6,6);R™), and

F(x,0) = x#ev o (x)=4°(0) = y(0)4ev, o (¥(0))-,5(0) = 0, (29)

by (23) and (26). Moreover, by (27), it is easy to see that

det <<r?k(x,o>>lij’k:p> > 0. (30)

With these facts, the implicit function theorem says that there exist

an open neighborhood U C UQX(-é,G) of (x,0), a § > 0, and a
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wiL{que function @: (-5,3) +R" such that (;(c),v) € U for
o] <&, and F(y(o),0) =0 for |o| < &. But also, because
B (-6,6)'*]]2!1 is continuous (this much is clear, directly from

the definition (18)) and V¥(0) = x, we can find a ¢' > 0 such

that (y(0),0) € U whenever lcl < §', while it is easy to see
that F(w(o),o).- 0 if lc( < 6, because of (23), (26), (28),
and the fact that ¥((-5,8)) C 32. Thus, ¢ and ¢ must in fact
coincide on a neighborhood of 0. Since the implicit function i
theorem also asserts that 6 € Cl((—é,g)ﬂRn), it follows that v
is of class C1 on a neighborhood of 0, 4.e., (20) is true. It
is imperative to observe here that the uniaueness assertion of the
implicit function theorem requires for its proof no smoothness

properties of the implicitly defined function, as one can check

(cf., [VI.2)).

With the verification of (20), for |e| sufficiently small,

the equality (16) is known to hold, whence
€
NaQC(G (x)) = N.o(x), (31)

and ane(Ge(x)) is given by one of van(x), -vag(x) (anE is

well-defined, since (ii) holds; cf., [VI.57]). Suppose first that

€ > 0: assume that Van (Ge(x)) = vaﬂ(x). We already know that
‘e

there exists a positive € such that y+svap(y) € q and

dist (y+sv ),3Q) = 8 whenever y € 3Q and 0 < s < €)- Thus,

ag(Y
if € € (0,:1) and s € (e,cl), we have P
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x+evan(x)+(s—e)-vag(x) € Qe’
so, according to our assumption,
€ €
G (x)+(s-£)°vaae(G (x) € a_,
which implies that

£ - £ g .
G™(x)+s Vaq (G (x)) € Qe whenever 0 <s < €,7€s

this is impossible, for it violates the definition of an (Ge(x)).
€

Consequently, we must have v (Gc(x)) = -y, (x) for € >0 and

sufficiently small. Similarly, if € < 0 and |e| 1s small enough,

one can show that Vaq (Ge(x)) - vag(x). We conclude, then, since
€

all restrictions imposed on € were independent of the particular

x chosen in 3§}, that

5
Vaq oG" = -sgn € °v on a0,

€
if e $0 and le] 1s sufficiently small.

1Y)

Statement (iii) obviously follows from this.

(iv) This fact was verified in the course of proving

(1). Q.

We complete Part VI by using the divergence theorem and the
estimates developed for the geometry associated with the boundary of

a Lyapunov domain to derive a generalization of Gauss's formula

(cf., Ginter [19] or Mikhlin [34]).

N

e o R STl
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let £€R’, with |gly<1. For x€R’, define T ():
R3ﬂ{x}' +R by setting
on (e 2 0 1012447372
T le} = (gTr, Do+-[e[ 0
Then
0 ,  A$ x€qQ "',

1 1 2 -1 .
j =3 Ty, 1Vaq Tx (8} dhgg (-8l 7, 4f x € g,

30 "x 4n(1—|£!§)_1, i x€o.

PROOF. Throughout, x 1is fixed in ]R3. First, we observe

= -l -
that since, Te,ij T Tx {Gij rx,irx,j} for 1i,j € {1,2,3},
=2 -3 2 2 2,,~3/2
(r g Tyl8D) sy = =2r Tl(eTr, )7+(-1e] )
- [} 2 2,,~3/2
+2rx3{(£ Ty o) +(1-|gl3)} /
~5/2

-2, 2 2 2
-3r ST, ) +A-lE D]

k m
(€ l"x,k) & (Gim—rx,irx,m)rx,i’

on R3f‘{x}';

noting that (6 it follows that

im-rx,itx,m)tx,i =0,

’2 3 Al )
(1:x rx,i.rx(g})’i = 0, in R MY x}"'.

Also, we obviously have, on 1R3'\{x)', recalling that 35}3 <1,

0 < (-leld < &t pFa-leld < lelda-igd -1,

(VI.69] L EMMA. Let a be a bounded Lyapunov demacn (n R™.

(H

(3




whence

2)—3/2 3
3

1 < T 8} < (-fg; , on  R{xl'. (¥

We shall now verify (2) by considering, in turn, each of the

three possible positions for x.

(i) Suppose that x € ¢ clearly, in view of the inequality

preceding (4), and noting that @ 1s a normal domain, we may apply

the divergence theorem in § along with (3) to arrive at (2) in this

case:

-2 i -2
f Ty Tx, 130 rle}r a, f (r, rx,i-rx{é}),i iy, = 0.
o Q
(ii) Suppose that x € Q: now, for any ¢ € (0, dist (%,37)),
we consider the normal domain QWBz(x)—'. Since the function
-2
r, rx{z} lies in dbGR3“{x}'), the divergence theorem and (3)

produce, in this case,

-2 i -2
f Ty Tx,1V20 rx{g} d*an + J r rx’i-(-rx,i)-rx{a} dx\
X 3 OBE (%)
3B (x)
3
- (22 TolED),, @
x x,i "x° 'L T3
nﬂnz(x)"
= O’
S0
e m—
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-2 i
J Tx Tx,1Van T8 g
30

()

1 \
- J 372 ¢

2, 2 2 2 3
r. {(r. )+1-]g]|3)} 3B7(x)
3Bg(x) X X, 3 €

For the evaluation of the integral on the right in (5), it clearly

suffices to assume that x = 0 and ¢ = |£|3e§3), as the use of an

appropriate affine isometry on 1R3 would show. To compute the

integral in that case, we shall use a spherical coordinate function:

let SE: (0,m)x(0,2n) -+ aBg(O) be given by

Se(wl,wz) := (¢ sin wl cos wz, € sin wl sin w2, € cos wl),
(6)

for 0 < ml <m, 0 < w2 < 2m.

Then Se maps (0,7)x(0,27) onto 3B§(0)“N', where N 1is a closed
subset of 383(0) of A -measure zero, and is injective.
€ 3
: BBE(O)
1

Setting Oe t= S; : BBz(O)QN' + (0,m)x(0,27), 4it is easy to check

that (aBi(O)”N',OE) is a coordinate system in 332(0), which can
be used for the computation of J f dx 3 whenever f €

3B~ (0)
332(0) €

W

Ll(BB (0)), since N has measure zero. Routine calculations give

- m

JSc(w ,uz) = cz sin wl and (£grx’2)osc(wl,u2) = |g|3 cos wl,

for 0 < wl <7 and 0 < wz < 27, the latter when x = 0 and

(3)
3

£ = |£|3e , as we are supposing. Thus, the integral on the

right-hand side of (5) is just




2r 7 1
J’ J ' sin w a1 2
L b tlel] cos? Wt -5 232
(7)
n !
1
in w 1
-21’7 f S du
2 2 1 2,372 ¢ -
0 {§€|3 cos” w +1-|£|3} /

The integral appearing on tge right in (7) is completely elementary;

if |g\3 =0, it is just I sinw! dut = 2, while if 0 < 1513 <1,
)
0
it can be rewritten as

2,-1/2
le],-1-1el

- 2 J du
el a-leld : (14?12

the value of which is easily found to be 2(1—|£[§)-1. It follows

that (2) is correct when x € Q.

(i1ii) Finally, we assume that x € 32, the most difficult

case to analvze: let (a,a,d) be a set of Lyapunov constants for

. The function r-zr oier {£} 1is continuous on 3N{x}' and
X x,i 30 x

we have, by [VI.66.1ii.4], the estimate

-3/2_ =2
r

2, (T ] < aslelh V]

RPN TON Y l
< Q-le1H g Ty, (8) |

for y € QQ‘Bg(x)“{x}';

since GZ'Bg(x)' is compact (3¢ 1is compact), there then exists a

positive k for which
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-2 i . -(Z-Q) amd '
!rx Te.1%30 Tx{E}] < er on anix}'.
The measurability of r;zr i aQ'F {C} on 3N"{x}' being obvious,
-2 .
it is easy to see that (9) implies that T, T 1 E@ T {5} € L ()

(cf:, also, [IV.19]). Thus, we can assert that (ef., [I.2.39])

-2
J rx rx 1V 39 x{i} dx
. N
-2 i
= l1im + f T, rx’ian-rx{g} dkaﬂ .
e~-+0 3
anﬁBE(x)'

For 0 < e <d, let us apply the divergence theorem in the normal

domain Q“Bz(x)‘ : in view of (3), we find

-2 i
J rx rx,ivaﬁ'rx{g} dxan
aﬂﬁBz(x)'
+ J i LT, )T lE) g
x % i 3B_(x)
3B (x)"Q
- (22 T e, d
x x,i x ’i 3

st(x)

=0,
so, from (10),
=2 i -2 )
J rx 'fx'i\«‘?’s7 Px{i} dkag 1im + J rx rx{g} dx

3
3 e~+0 SBE(x)

332(x)ﬂﬂ

(9)

(10)

(11)

e A —— . T——p———— o e s
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We must now evaluate the limit appearing on the right in (11);

for this, it suffices to evaluate

-2
lim f r, T {¢} dx >
<+ s ‘ ’ (l‘)
: e~>0 3 00 282(0)
3B_(0)"Q €

where C]R3 is a Lyapunov domain, 0 € 3Q, Taﬁ(O) = {y €R3! :

y3 = 0}, and vaﬁ(O) - e§3), since the general case can be reduced
to this by employing the affine isometry ﬂ% introduced in [VI.62],
or, more precisely, its restrictions to the spheres aBz(x), to

replace the integrations appearing on the right in (11) by correspond- ,

ing integrals over H;{aBz(x)ﬁQ} = BBZ(O)’W;{Q}. In fact, from T

{vi.52] (cf., also, [I.2.26.a]),

-2
[ r T {g} dx
3 x x 3B_(x)
3B~ (x)NQ
€
-2 1 -1
= f (r, -rx{g})ou; -Jﬂ%e dA (13)
3 aBE(o)
¥ (3B_(x)NQ)
- f 2o {A_E} d)
0 07k 3 ’
3 aBe(O)
3B (0)( ()

in which K#E = I*] aBg(x): aBz(x) *]RB is an =-imbedding taking

aBg(x) onto 382(0), and Ax is the linear isometry defined in
{VI.62.1i1i), the second equality following from a simple calculation

taking into account the properties of ﬂ;l and Ax‘ and the easily
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verified fact that Jw;i =1 on 332(0) for € > 0. We do have

R . 3; .3
0 € 30T, Ty ()@ = (v € R oy

= 0}, and va{X¥(z)}(0) =
e§3), while H;(Q) is a Lyapunov domain, any set of Lyapunov
constants for § also being a set of Lyapunov constants for ﬂ;(t).

+
Once we have verified that the limit, as € - 0, of the last

integral in (13) depends only upon |Ax£|3, the sufficiency of the

simplifying assumptions shall become evident, since l£]3 = {Ax£\3.

Let us then consider (12), under the hypotheses listed. We

intend to show that

-2
1lim I r. T .{g} dx
e-o" | 00 38°(0)
3B~ (0)NG €
€ (14)
- J r22r (£} dx =0
00 a3 ’
3 3 3B, (0)
38 (0R?
and
-2 2,-1
J r, T,{g} dx = 2n(1-]g|3)" ", for each ¢ > 0, (15)
) 3 00 333(0) 3
3B_(0)RZ €
wherein

]Rz := {y €]R3] y3 < 0}. (16)

Clearly, from (14) and (15) it shall follow that the limit in (12)

is also 2n(1-[£|§)-1, hence, in particular, depends only on |£l3.
By the reasoning outlined above, we shall be able then to conclude
immediately that the limit in (11) is 2f(1-!5|§)-1, with which the

proof of (2) shall be complete for this final case.

SPIE—
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To verify (14), write

3

R} = (y€R’| y°> 0}, (17

= ~ 3 3
Qe+ : Q“BBE(O)GR+, . for 0 <eg <d, (18)

and, for 0 < e < d,

G = (3820 RO}~ {3a8] ()R} = 4'enl (0w, (19)

Noting that aBz(O)ﬁﬁ is the union of ﬁﬁaB:(O)ﬁRE, ﬁﬂaBZ(O)nmi. ;

and a set of A 3 -measure zero, we have
335(0)

-2 =2 [

[ r=2r (¢} a - J =2 (e} a ] |

’ 3 3 00 aBZ(O) X 00 asz(o)I ;
3B (OX R 3B_(0) :

N
m H
~N

r,{g} da - J r.{g} dx

J 0 3830) ) ° 383 (0)
€ €

€= (X 4

<y

- f
< == r.{¢} da + f r.{g} dx
- 2 0 3 0 3
€ {ﬁ BBE(O) 8 BBE(O)J
€~ e+

—l— . - 2 -3/20
<5 -a lel3)

di R

< 382(0)

having applied the inequalities in (4) (with x = 0). To estimate
the integral in (20), we shall use the spherical coordinate system
(aBg(O)ﬁN‘,GE), introduced in part (ii1). Note that the setting
here coincides with that considered in Lemma [VI.64] and Remark
(vI.65], so that we have available the facts proven there. Let

(a,a,d) be a set of Lyapunov constants for . o denotes the
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orthogonal projection vyi» (yl,yz,o) taking m? onto Tai(o),

and HO := nol (SﬁﬁBg(O)). We assume now that € 1is any number in
the interval (0,(7/9)d). Let us first study the case in which

y € ﬁe+“N': then 1 (m(y)) < r4(y) = <(7/9)d, so my(y) €
ﬂo(aﬁﬁBz(O)) by [VI.64.ii], whence (yl,yz) is in the domain

UO of the function f introduced in [VI.64]. Since we also have
y € &, (VI.65.3) shows that y3 < f(yl,yz), with which the
estimate (VI.64.10) yields

1 3
y

™|

1l
cos Os(y)
<-% f(yl,yz)

1 éréh(no(yl,yz,f(yl,yz)))

| A

1 - 14a
= < ar, (ﬂo(y))

< l 521"'Q

Thus,

sup cos el(y) :_Sea. (21)
y € QE-O-DN' €

Suppose next that y € ﬁE_FN': again we have ro(ro(y)) < g <

779 d, so (y',y}) €D, Now, ye€&', by (19, so y € & ‘Ui,
and (VI.65.3) implies that y3‘: f(yl,yz). Again using (VI.64.10),

1 l1 3
cos Oe(y) =2y
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1

12
Ef(y.y)

RY

1 1 2
Py [£Cy™,y5) |

jv
]

> - % 5r(1)+°(v0(y))

> - _]_._ ;€1+a
€
~ a
= -ag .
Consequently,
1 - a :
inf cos Oe(y)li -at . (22) s
y €3 NN f
€ }
Now, set g’
:
1 ‘
8., i= inf 0" (y), (23)
y € a_ N €
1l
8 1= sup @E(y). (24)

€= y € Qe_ﬁN'

Since cos 1is continuous and strictly decreasing on [0O,n], we

see that
cos 6 __ = sup cos Gl(y) f,éea, (25)
£ yER AN €
c+
cos € =  inf cos @l(y) 3_-5&“, (26)
 oyea_mw € \

by (21) and (22). Returning to the expression on the right in (20),

we can clearly write, using (25) and (26),
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Loaged? [ a
@]

3 -
£ ~ = 3B~ (0)
Qe- Qe+ 13
27 ee-
cated? ] et e?
0 8. (27)
2.-3/2

2n(1-1£]3) “{cos 8_, ~cos 6 __}

wma(1-le 3%

[

With (20), the estimate (27), holding whenever O < e < (7/9)d,

implies (14).

Next, choose any ¢ > 0 and consider the integral on the left

in (15): wusing the spherical coordinate function,

-2
( r, T {¢} dx
50, 00 282(0)
38, (0)"R_
- [ 77 s (28)
3 3 ro{(s T 2) +1-[g|3} 3B~ (0)
3B (OY R ’ €
sin wl

1 2

L 1 2..2
(n/2, n)x(0,2n) {(e ro,z°se(“ »w)) +1—|£l3}

It is no restriction to suppose, as we shall, that 52 = 0 and

51 > 0. Setting, say, 6 :=0 if £ =0, and

6 := cos (g3/}e]3) if  £4o0, (29)
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we then have

§3)+ cos 6 e

£ = |5|3(sin B e §3)).

Obviously,

1 2 1 1 2
grad rO(SE(w w)) = ’y Ss(w Lw)

(3) 1 2 (3)

= sin wl cos wz'el + sin w” sin w e2

1
+cos w e ,

(3)
3
so

agro EOSE(wl;wZ) = |£|3(sin 8 sin wl cos mz +cos 6 cos wl),
b4

for 0O<w <7 0 < w2 < 2m.

Denoting, for brevity, the integral in (28) by I, we can now write,

more explicitly,

1= (1-lg|3H3/2

(n/2, 7)x(0,27%)

1 2

.sin w qu(ul,u ),

{1+Y2(cos 8 cos wl +sin 8 sin ml cos m2)2}3/2

where

v = lelyea-lgl D72

Let us first rewrite the preceding integral, using the translation

invariance of Az, as
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1= q-e3H?
' (n/2, n)x(0,7)
1
sin w 1l 2 -
- di (W ,w)
{1+72(cos 8 cos wl +sin € sin wl cos w2)2}3/2 2
(30)
+
(n/2, n)x(0,m)
1
sin w 1 2 ‘
d,(wT,w7)y .
{1+72(cos 8 cos wl -sin 6 sin wl cos (‘:2)2}3/2 2 J

Now, consider the map gy (0,1)x{(=n/2, 3n/2) +Tm? given by

gi(o,w) i= p cos w
for 0<p <1, 7/2 < w < 3n/2, (31)

gi(o,u) t= p sin w

and the map gy (n/2, n)x(0,n) ->]R2 defined according to

gé(wl,wz) t= cOS wl,
for =/2 < wl < m, 0 < w2 . (32)
2,1 2 1
gz(m ,w') 1= sin w cos w

It is easy to check that both g, and g, are injective, with

8, ((n/2, Mx(0,m) = {y €RY] yl <0, |y, <1}

™ gl((o’l)X(T'/z., 377/2))1

ng(o,w) = p for 0<p <1, n/2 < w < 3In[2, (33)

and

— 4
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ng(wl,wz) = sin2 wl sin wz for n/2 < wl <7 0 <w” <7, (34)

’

Consequently, defining g := gEIOglz (0,1)x(n/2, 3=/2) *]Rz, ve

see that g is injective, g((0,1)x(n/2, 3n/2)) = (n/2, n)x(0,n),
and

I8, ) Jg,
_ing)og i !

-1
Jg = {(Jg, )og,}-Jg, =
R (A R e

whence short computations produce, using (31)-(34),

0

’ (35) ’

Jg(o,w) =
(1-92) /

2. sin glén,w)

and

cos 9 +cos gl(p,w) *sin 6 sin gl(p,w) *cos gz(o,w) = ¢ cos (W¥3), (36)

for 0<pc<l, n/2 < w < 3n/2.

Whenever f: (n/2, n)x(0,m) +K is Lebesgue-integrable, [VI.52]
implies that fog:|Jg| 1is Lebesgue-integrable on (0,1)x(n/2, 37/2)

and

fd, = f fog+!Jg! dx (37)

2
(n/2, n)x(0,m) (0,1)x(n/2, 3n/2)

23

Fubini's theorem shows that the integral on the right in (37) can !
be rewritten as an iterated integral, using either order of integra-

tion. Applying- the latter fact and (37), and accounting for (35)

and (36), equality (30) can be recast as
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1= (1-I£i§)'3/2 1
!
3n/2 1 !
o
. j & () dr () (38)
2 b (1-021 2 (14v%6% cos? (u-6))32 1 1
In/2 1 ) %
+ f £ L (e) (W) . *
a2 0 {1-02}1/2{1+Y202 c052 (m+6)}3/2 1 1 I 4
i
To evaluate the integrals in (38), first define
8 i
I
I(8;n) := J £ dr, (e), i
0 (1-02}1/2{l+n202}3/2 L. .

for each g8 € (0,17, n €R; ;

note that the integrand is nonnegative and continuous on [0,1), so
the Lebesgue integral 1I(1:n) 1s defined for each n €R, while

if B € [0,1), I(E;n) can also be interpreted as a Riemann integral.

Choosing a non-decreasing sequence (81); in [0,1) such th t
8i + 1, define f:: [9,1) - [0,»), for each i €N, by
p(1-52) M 21an2 2y Y2 4e 0 <o cs, |
n em )
fi(c) :
0 . if Bi <p <1,

wherein n € R has been selected. Then (f;

non-decreasing sequence of nonnegative measurable functions on

): is clearly a

[0,1), so the B. Levi theorem on monotone convergence (cf., Hewitt

and Stromberg [20], Theorem (12.22)) gives

T gy T TS T e
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1 1
lim f £7 dr, = J (lim £7) dir,
{ +» o i 1 i > = i 1
{.e.,
1lim I(Bi;n) = I(1l;n). (39)
i <>

Now, whenever B8 € [0,1), the elementary change-of-variables

formula for Riemann integrals allows us to show easily that
1

2 172
1-8
I(ﬁ;ﬂ) = 2 1- 2 2 ’
1+n (1+n 8

so, from (39), recalling that B1 -1,

1
o) 1
dr (0) = I(1:n) = . (40)
i {1-p2)1/2014n2,2y3/2 771 1402

Since (40) holds for each n € R, we can use it to reduce the

equality (38) to the simpler form

3n/2
1= (1-lgl33/? f —L ar @)
3n/2
1
+ 3 3 dkl(w)
"2 14y cos” (w+8)
%1 -8 (41)
2 -
= (1-|g]y 1/2 J 21 5— dA ) (w)
- 1-,5’3 sin” w
- -8
In
3 +9
+ J 21 2 dkl(u) ,
n 1-!&[3 sin‘ w
E +0




after some simple manipulations, recalling that vy := i£|3(1-|£‘3)
Finally, to compute the values of the integrals appearing in (41),

consider the function o: RN{(2n+l) % l n€I}'-+-R given by

-1/2

o(g) := (l-lﬁlg) . tan-1 {(1-|€|§)1/2 tan ¢}.

1f ;n := (2n+1) % for some n € I, we find

lm, o) = 33 a-lgH72,

g - Cn
while if 7 € RN{(2n+l) g~[ n € A}', an easy calculation produces
2 -
)7L,

a'(g) = (1-l£l§ sin” ¢

Then, suppose that o, B € R and o« < B: if the open interval

(a,B8) contains no odd-integral multiple of w/2, it follows that

8
f s A (W) = lin _ o) - lm, o(w);
o 1-|£|3 sin® w w8 w > a

if the open interval (a,B8) contains exactly one odd-integral

then, cleariy,

multiple of /2, Wy
8
J 21 2 d)\l(w) = lim - O(W) - lim + O(U)
5 1-[£I3 sin® w w8 w+a

+ lim _ o(w) - 1lim + o(w)
w =+ wo w - wo

= lim o{w) - lim o(w)
- +
w8 w=>a

+n(1-|£|§)'1/2.

12,=1/2

(42)

(63)

(44)

45)

(46)

[y
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Recall that o € [0,n], by (29); we consider each of the possible

positions of 6, as follows:
(a) If 6 = 0, then (41) becomes, using (45) and (43),

I= (1-|5|§)'1/2-2{ lin _ o(w) - lm o(w)} - 2m-[5[ D7 @

n
w > > w =+
2 2

(b) If 6 =7, then, each interval (-n/2, n/2) and
(3r/2, 57/2) containing no odd-integral multiple of #/2, just as

in case (i), we can again apply (45) and (43) in (41) to obtain

1= (1—|£|§)-1/2- lim _ ol - lim _ o)
+ lim _ o(w) - lim + o(w)} (48)
5n 3n
w-bi— w-PT

- 2n(1-g| D7

(¢) If 0 < 6 < m, then it is easy to see that
[n/2 -8, 31/2 -8] and [n/2 +8, 3n/2 +6] each contain precisely
one odd-integral multiple of /2 (n/2 in the former, 3n/2 in

the latter), so we apply (46) in (41):

1/2

1= -lel D tean™ (a-1g(HY? can (3r/2 -0))

1/2

~tan"! <(1-|gl§) tan (n/2 -8))

1/2

+tan " ((1-|£|§) tan (37/2 +8))

~tan"? ((1-£12)12 tan (n/2 +0)) +21)
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- 2r1-1g]3H7L, (49)

since tan (37/2 -8) = -tan (37/2 +6), tan (m/2 -8) = -tan (n/2 +5),

and tan-l is an odd function on R.
Thus, (15) has been proven.

As noted, the proof of the lemma is now complete. 0. - 4
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